Guide to NavyFOAM V1.0

NSWCCD-50-TR-2011/025

Naval Surface Warfare Center

Carderock Division
West Bethesda, MD 20817-5700

NSWCCD-50-TR-2011/025 April 2011

Hydromechanics Department Report

Guide to NavyFOAM V1.0
by

Hua Shan, Keegan Delaney, Sung-Eun Kim, Bong Rhee, Joseph Gorski
and Michael Ebert

Approved for Public Release: Distribution Unlimited

A0V 05]170\|

UNCLASSIFIED
REPORT DOCUMENTATION PAGE Wiy - i

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information, Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden 10 Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-

4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to compty with a collection of inforration if it does not display a currentty
valid OMB control number. PLEASEDONOTREWYMFORMTOMAEOVEADORESS

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
14-Mar-2011 Final =
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Guide to NavyFOAM V1.0

5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Hua Shan, Keegan Delaney, Sung-Eun Kim, Bong Rhee, Joseph

g ; S5e. TASK NUMBER
Gorski and Michael Ebert

5f. WORK UNIT NUMBER
11-1-5705-411

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Surface Warfare Center
Carderock Division NSWCCD-50-TR-2011/025
9500 MacArthur Boulevard

West Bethesda, MD 20817-5700

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
DoD HPC Modernization Program

Office

Attn: Dr. Douglass Post 11. SPONSOR/MONITOR'S REPORT
10501 Furnace Road NUMBER(S)

Lorton, VA 22079

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD) capability based on Reynolds-
averaged Navier-Stokes equations (RANSE) aimed at predicting turbulent single- and two-phase flows
around ship hulls. The CFD capability employs a finite-volume discretization that allows use of
arbitrary polyhedral elements. The free surface is captured using a volume-fraction method capable of
accurately resolving sharp interfaces. NavyFOAM has been developed using an open-source CFD software
tool-kit (OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods and the
physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy
and robustness of numerical solutions. The details of NavyFOAM V1.0 including the numerical methods and
the physical models are described in this report. NavyFOAM V1.0 is demonstrated for a number of flows
including: underwater bodies, turbulent free surface flows around the DTMB 5415 model and the KVLCC2
double-model. It is shown that the RANSE based approach can predict, with good accuracy, most of the
salient features of the turbulent free-surface flows around the subject hulls including resistance,
wave elevation, hull boundary layer and wake.

15. SUBJECT TERMS
Reynolds Averaged Navier-Stokes (RANS), computational fluid dynamics (CFD), NavyFOAM,
OpenFOAM, Object Oriented Programming (OOP)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Hua Shan
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED SAR 142 code)
301-227-0573
e Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

UNCLASSIFIED

UNCLASSIFIED
REPORT DOCUMENTATION PAGE W il il

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the lime for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions tor reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Adington, VA 22202-
4302. Respondents should be aware thal notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a cumently
valid OMB control number. PLEASE 0O NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
14-Mar-2011 Final =
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Guide to NavyFOAM V1.0 5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Hua Shan, Keegan Delaney, Sung-Eun Kim, Bong Rhee, Joseph So. TASK NUMBER
Gorski and Michael Ebert ’

Sf. WORK UNIT NUMBER
11=1=5705-411

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Surface Warfare Center
Carderock Division

8500 MacArthur Boulevard
West Bethesda, MD 20817-5700

NSWCCD-50-TR-2011/025

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES;) 10. SPONSOR/MONITOR'S ACRONYM(S)
DoD HPC Modernization Program

Office

Attn: Dr. Douglass Post 11. SPONSOR/MONITOR'S REPORT
10501 Furnace Road NUMBER(S)

Lorton, VA 22079

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD) capability based on Reynolds-
averaged Navier-Stokes equations (RANSE) aimed at predicting turbulent single- and two-phase flows
around ship hulls. The CFD capability employs a finite-volume discretization that allows use of
arbitrary polyhedral elements. The free surface is captured using a volume-fraction method capable of
accurately resolving sharp interfaces. NavyFOAM has been developed using an open-source CED software
tool-kit (OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods and the
physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy
and robustness of numerical solutions. The details of NavyFOAM V1.0 including the numerical methods and
the physical models are described in this report. NavyFOAM V1.0 is demonstrated for a number of flows
including: underwater bodies, turbulent free surface flows around the DTMB 5415 model and the KVLCC2
double-model. It is shown that the RANSE based approach can predict, with good accuracy, most of the
salient features of the turbulent free-surface flows around the subject hulls including resistance,
wave elevation, hull boundary layer and wake.

15. SUBJECT TERMS
Reynolds Averaged Navier-Stokes (RANS), computational fluid dynamics (CFD), NavyFOAM,
OpenFOAM, Object Oriented Programming (OOP)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Hua Shan
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED SAR 142 code)
301-227-0573

‘e Standard Form 298 (Rev. 8-98)
/i Prescribed by ANS! Std. 239,18

UNCLASSIFIED

Contents

Page
S Tl Ul e erosmrerm bt s e e R N D e e s S 1
AeriitinRratts DrOPORERRINOHY i o sominmon oo e TR o S T R YT S ST A BA R WO O |
T8 (T [T TTA o) DU P PP 1
TeEBIAc] PREBETIRIIN o rsws om0 T vy e ot 195 SV WS T i S G S PP TP B S avis et 4
) RO oo oo o s o S 0 S TSR s 4
BINEIS VHEES B s e s s o e i o T ST S oy o s S TR RS 4
TR0 S A O A A A At A 4
b 11T T L T amp— 5
Spelial and Tanpokall THISCEMBNIMIEL ... o csuevror sirussimsssonss soons sasesmasersansssssssesss sra wssnra s srnsansssas 5
Giradient S e N e e e e T e T e T R T T e TS 5
Gauss INEEGAtION.cvviiieiiie ettt ettt ettt e ebe e s 5
Cell-Based Calgulation. ...niwnmowverenssionamrsmssessa s s 5
Node-Based CHISUIAGIONccorimmerrmmessmremessssssrssassvesassassssessansssusssansansases 6
LA S QAT ey N S TS TR e P A S e o S e 6
O L Gl S L TR C S it ot it i et i sl s e 5 e A s s T vt 8
Conveetion Boundedness Criterion (CBC).o.oooovviiiiviiiceiieeeie e, 8
L e T P e R AT S T A A e A e 9
Nonlinear SCHOMIES. . aimmmmmmmsmis e e s 10
vanLeer Seheme (van Leer7) .. 10
Qi Bl R P sosssssasommmnnmmsmsomiosmsssmmssis 11
HYPER-C Seheme (Leonard”)c.oooveeveoviieeeeeeseeecereseesese e, 1
Ultimate-Quickest (UQ) Sehemc (Leonardg) e 12

Compressive Interface Capturing Secheme for Arbitrary
Meshes (CICSAM) (UbbInk& IS5a"®).........cooveveinimrerrenieneeesiesseesesssies s 12

High Resolution Interface Capturing Scheme (HRIC)

(Muzaferija & T PO RS R R R e R i
Modified HRIC (MHRIC) (Park et al.'®)oooeereeeeeeeeeeseeeee e, 14
Inter-Gamma Seheme (interGamma) (Jasak & VT AE o s 14
Modified inter-Gamma Scheme (interGammaM).............cocceiii. 15
Modified inter-Gamma Scheme (interGammaMD).......c...coccvvvvciveiinnnn. 16
IO AR, S & IR v 9 T L R S T B S N PRV T o o WA A T wen s 16

iii

Cell-based Surface Interpolation Sehemes.coceevvieinieininiiinieni 16

Linear Interpolation Surface Intcrpolation Scheme.........c..ccoeveiviiiiininnn. 16
reconCentral Surface Interpolation Scheme.ccocovevviiiencrsccniinniciiiieneee 17
Upwind Deferred Correction (UPDC) Surface Interpolation
S O S i o e e T e e S T S L S e e T P i 17
Node-Based Surface Interpolation Schemes...........ccccvverccrecncccrnrecicnensccsrmisanecsussasins 18
Volume-to-Point Interpolation Schemes..........cccocueeviniininiienininiiene e 18
Volume-to-Point Interpolation Based on PLWA. ..., 18
Volume-to-Point Interpolation Based on IDWA.............ooviiiiiiiiiiiiiicce s 20
DT O S TRNOR 1 0 imiiscismsins s s o555 85 iSRS 5 3 AT S S50 21
SOVEEON, Ad GOo rwsmmemmm oo oond v b T o s) SR 21
Pressure-Velocity COUPINEcccooeiiiriiiiiiieeiiinie sttt st et eee e 21
Selving the Pressute BquathOR. s e s miss:shusesis i dsnsssaasssiisissamsisdamies 21
I o e riace el s b <l AT el o e A S T e RO 24
Brad e Nt S EheMIES it s s s T T T i R e T e A 24
Navy L east S quare s G radi ety S O HEIIES s o e se e uneosnme ssssssssssbunsssionss ssnon sopansisatnn seesasssnss 24
[t ETPON AT 0N STEEIIES. vrewveeseonsoenesivaiss sass o amsamiasweis ssissiases e ssrswvesss 38 K ie s o s e s (s sw 4 s 25
Cell-based Surface Interpolation SChemesccccooveiiiiiiiiieeceesereeee e 25
reconCentral Surface Interpolation Scheme..........cooecviiiiiininiiiiiiiec 25
rcconCentralDC Surface Interpolation Schemeccccoveieieeiiiceniiiiinnn, 25
Node-based Sutface Interpolation SCHEMESwmmmiasmimm st s e 26
rcconPLWA Surfacc Interpolation Schemeccoociveiiiiiiiieiiiee s 26
recon]DWA Surfacc Interpolation Scheme...........ccoovvvviiiiiiiiiiiin e 26
G ONVECHONES G T S, 5 s e T T e S e e S TS S b ot SEARN TS Apiom s o 27
Conveetion Boundedness Criterion (CBC) Schemesccocvieieeiieecieiee i, PiTf
Compressive Interface Capturing Scheme for Arbitrary Meshes
B) 1 e e e A L e et o i s e 27
High Resolution Interface Capturing Secheme (HRIC)............coccoeiiiiiine. 28
Modified HRIC (MHRIC)......cccoiiimiiiiiininineieceeeeteeeesieee et 28
Inter-Gamma Scheme (interGamma)ccccceviiuiiiiiiiiniieiieciee e 29
Modified inter-Gamma Scheme (interGammaM)cocoeiiiiieeiieicieeceee. 29
Modified Inter-Gamma Schemc (interGammaMD)c.cccceeeiiiiinenneennn. 30
EXANTPICHRCEGITS. cioemmi ottt s smeiiod e oo eie e st 4 s e e A el T s e)

iv

RO o T A R D A B R i e B e P Ao 34
TRAR WESUSESAIS ... oo verwines omumaatnsomamen apeiod s summ s s sy TN RIS s SRS 35
Eined Steaee Gl Tl cusms enrir s e i e e R S e s i 35
Dyiitis SInRAEe A TN . .courwssanmuncsmmrsses s mrmmss s s issmmsaass R g 38

Joinit Higli Spocd Sealifl [IEISS)i i i imamisrisnmmtiontsnsssssnstomamsesmmnomammseissmesrmsmsssims 39
Unpowersd Baze Hll ConupuilBlions ... i nossmasimmems s s i sma 40
Powered Computations with Waterjets.oouievrieiinieieienienenieeiete e esie s 44

N IR ot ottt R 3 B A A 0 e o T S VA S 46
Appendix A: Supplemenial UIaeh’ 8 GUIHE s it isissosisssions messsasasasasssstonasans sz emmmpses 47
R TR . vttt 205 0 A RO Y B ST S RSPl 47
R RORCE EEIRIEY v e S S o G T A TR S SR e T T e e 49
T RN BT e SRR e I I MR e T e P Sep SR SR 50
OO - 5o B B B R R T A R R A A B GG A0S 51
Bopeiulis BY U BRI v cooons rmen socroe comveoss s avametnsassoviss s amvas’s s e e o amesphiss v s 53
ARy PiehdCOTaBREINN, - cos v s A T A R R A O R e oo 53
T Y) T 1 S o o o O e T et e D e e e 53

S AR o imn SR E T o R s 58
INSTALIATION. ..c..ee ittt ettt et ea et eenes 53

R B! SN s s s o0 e ST O SN RS T Y O S R K RO S 54
g R TS AE SRR Be U g o 0 Sk S LR oL 54

R AT OTOBPLOR: . oo comnicssnisbismsmns e s T S o S P Vsl 56
T T T T Eon, 56
EIBARIE - estarmesrmmaremtss e A S S T B T S N A TS A 56
e e i 3 S o i e s SR 57
EMURPIUI oo ommassosmest se s o s P A A B R P 9 S NN e SR S o s 57
NaVYCellSEtTOTECPION ...ttt et e st e et e s 57
I RORETHEMIIN. . oo vt e A 2 R T A AR S et 87
S A S et P T O T T T B T Y s b iy oo i 57
1 I S e L 58
NI s e T T S P T ST S AT oA S s o st S8
NaVYFaceSCtTOTECPIOtcooviiiiiiciciecs ettt st e e tr s aa e st e 58
TENETE OO « 0B s e A T b 8 L S 5 o e g s s s 58

e A RS oM v s s s b psasior s S s T SRR T PR S AT A R S BT 59

L e e e e o e s 59

Appendix C: icoFoam Lid Driven Cavity Tutorial............isimsminssssinsamsssssmmimsmsesse s 61
Pre-Proceauing atid CABE SO coceoeas snsuooonsemasnmsoson semsans snsssersusesssimansmtnssoasmanseononssnsss 61
NECEB MR . v s s ST Y SR SR SRR RS T 61

constant/ directory and the createPatch Command............c.cooceeeiieieniniieccceecee 64

Material PrOPEITIES.........ccuiiiiieiiie ettt e st areens 71

0/ directory (Initial and Boundary Conditions).........cccceeieveeenieeseeieneieceeeeeeece e 72

syaten/ difectony (Solver SEBEE) couc iimariemiassnn s dossssissatoressmastiass sensssasinasest 76

RN B RO s it i e e T b s e S B S e o o 81

P oot P SIBIR: - socsvemusnms ovian it B i 5 A ST S S A 83
Appendix : simpleFOAM Body-1 TUOmAL - cusmcanniscinmemmssinmgsesisssmmmmimonsansasesssesoccasunnes 85
Pre-Drocesaingania CIRE SBIE.. ..o crmasnmmmsimion msms i s m e s s b s 85

M S DU e e e A e T e S S T R AT s e e s s 85

constant/ directory and the createPatch Command..............ccoecoviiiiiiniiecinciecee, 89

Blaternl Propemiies.. . cuwrnsminnt e vt s S e s i R 95

0/ directory (Initial and Boundary Conditions)............ccocevvvveeeiviinenieninencreneeiieennen 95
system/idiréctonyi(SolveriSettings) s smusmimrmr i st 103
BORREIROrTAGE. /oo sustmsomenpsmmians s iR G I RN T B BN SRS PR AN 111

PO St P IO eSSl e m s s e e P i T T T e e R D O e L A T oAl s 113
Appendix E: ransFSNavyFoam Wigley Hull Tutorial..........coceeeirriinnerieeieneneeeeeceie e 115
Pre-Processingiand Case S et D s et sasensmmaior s S rraas s e s ra O s o s 115
CODSIAMY Y FITECUOET . o0 ecnonnnsseanannars snsenssssssnessnssssesssmss snssstinpanssiss ssss snsssmss sspmsssnsssnmnsssnssess 115

0/ directory(Initial and Boundary Conditions).........c.cccceueeeeneniniennncriniieniecicecneen 21

Syrstetin/ Roldei-(SOer SETHRER) ... o.cooome-smsss rummsnrommaasss sasompssgsossssmnsansseanse pererzas 127

P AT RO GRS rrmvnrvmmaemsaranves e e s 9/ o B i A T S R ST A R TR 137
R 00 e S A o D S AT A S i e S 137

PR BIRG v oo i v S S e T S I e T D T T e S e vet 141

vi

Figures

Page

Figure 1. Stencil in cell-based gradient calculation in two-dimensionsc.coceveeviveniiinnn. 6
Figure 2. Stencil in node-based gradient calculation in two-dimensionscccceevvneieeiinnnnnnn 6
Figure 3. Stencil in least-squares gradient calculation in two-dimensions...............ccccceoieiienncns i
Figure 4. Illustration of nodes and face in one-dimension.............occovvevereiiiionnieiinnenciieciea, 8
Figure 5. Normalized variable diagram (NVD) with CBC (the shaded region)..............c....c........ 9
Figure 6. NVD 'of linear schittots WIRICBECovioersasiuesesssnesss sasonsisspassesissgasess o sashinsansssnsssee 10
Figure'7. WVD ¢fvanLoer schemierwithh CBIEcimnissmnmssus: i tmmsnisyeamisysdaisss 11
Figine 8. NVDof Gainiiia SChemm@ WITIEBLE...........oc ecommsssissimsmssionasnspssnssscsssnsnssesmorssnsisasbassassse 11
Figure:9. NVD of HYPERAC scheme with CBE.....cimunmimae st it ife i ansim: 12
Figure 10. NVD of UQ schecme with CBCooiiiiiiiiie e 12
Biiguses VL, BEIEHG. <ccuscumevsumaiassamssn e sessesstostag e D A G S S R 13
Pigime 12, NVD of CICSAM scheme with CBIC ... susmencvsvimimnnsssssssissss s ssssrstassis 13
Figure 13. NVD of HRIC scheii WIEBCooonioamismonmiseusssnosesmasansams ssoassssnssassassssuysias ssnsons 14
Figire 14. NVD of MHRIC scheme with CBC........ccccociiiissmmiaisiitumssisssssosasiseiissimsssiis 14
Figure 15. NVD of inter-Gamma scheme with CBC...........oooiiiiiiii e 15
Figure 16. NVD of interGammaM scheme with CBC ..., IS
Figure 17. Cell-based interpolation of face-center value...............ccoccovveviviivieieciencnieceee e, 16
Figure 18. Node-based interpolation of face-center value...............cccoocevieniniieneniieiee e 18
Figure 19. Stencil in cell-based gradient calculation in two-dimcnsionsccceeeeveeeeniiiiiinnns 18
Figure 20. Calculating face-normal gradient................coccoovieieiiiiniineiiecee e e 21
Figure 21. Example of gradSchemes sub-dictionary...........cccccocuevveneerneinieeneesvenieennennn R 24
Figure 22. Example of interpolationSchemes sub-dictionary........cc.cccccooenviininininnn 23
Figure 23. Example of divSchemes sub-dictionaryccccooeviiiiiiiieniiieniniciiee e 26
Figure 24. Example of interpolationSchemes sub-dictionary.............c.ccocoovieniinin. 20
Figure 25. Example of interpolationSchemes sub-dictionary............ccccocevviieineniinnenn. 27
Figure 26. Example of divSchemes sub-diCtionarycc.cccoccevvenieniiiieiieeieenieese e 28
Figure 27. Example of divSchemes sub-dictionary..........cc.ccoccooviiiiiioneiiiiiicee e 28
Figure 28. Example of divSchemes sub-dictionaryc.c.cocceoviviieniivieiiiinie e, 70
Figure 29. Example of divSchemes sub-dictionarycoccoovvivieiieiiiiniieieiie e 29
Figure 30. Example of divSchemes sub-dictionary...........ccccceeceiiiiiiiiiinieieeniecieseesre e 30
Figure 31. Example of divSchemes sub-dictionary...........c.ccccovvcevviniveennineeenninceniieesennee e, 30
Figine: 32, Bodyall fomiislig v,y o e S A S AN 2]
Figure 33. Surface mesh on the body and symmetry plane (left) and surface mesh

with volume:meshicross:cumti(right)......omm srrmmmunmmmnsiss s s 32
Figure 34. Axial velocity (Ux) contours on the symmetry plane and pressure

(Press) cOntOUTSONANE ULl . cormmrsvii aem s s s e e e AT f iy 32
Figure 35. Skin friction coefficient (C;) and Pressure coefficient (C,) plotted

Alofy e [ShgHL ol IS RO .o oo vonma s s S ST A A D
Figure 36. Axial velocity boundary layer plots at x/L = 0.755 (left), x/L = 0.846

Gitiiidle), L. = DO UEFUNYosvmemumman s s o s Ao ST AR5 33
Pigmrer37. StEtifloW o he FVIIOUZ.coosinmssussninsmmmm smsasassssss i soumseops ssasavunssmsabmis 34
Figure:38. Grids used farthe ENMLOCZ . . v s s #ias sl e s o i i oo 34

vii

Figure 39. Contour of axial veloeity at x/L = 0.9825 predicted on the two meshes.

Top — hybrid (prism + tet) unstructured mesh; Bottom — snappyHexMesh.................... 35
Figure 40. Contour of turbulent kinetic energy at x/L = 0.9825 predicted on the

two meshes. Top — hybrid unstructured (prism + tet); Bottom -

SRAPPYHERNIBRN v ccnipmnanyes ssssonansmmmassmsmonms i son s s eam o oo oo i st s s vas K b 85
Figugie 41 arid for DTMB ModGl 5415 5o riiosmmimusasniinssimssmsasssssssnsssssssosssoasgsess 36
Figure 42. Contour of wave elevation for DTMB 5415 with SST 4-® model result

BT RSO AT CHILRIBR ... oo i s smanivepsnes sesavussise sasensons douasissameasoas TR s 36

Figure 43. Wave elevations along three longitudinal cuts obtained using SST k-o

model on three different meshes: top - y/L = 0.082; middle - y/L =0.172;

RO = SUL=RROR. .. . o cinininmsis St P AR SRS SN SR S AT T 37
Figure 44. Wave elevations along three longitudinal cuts obtained using three

different turbulence models on the 6 million eell mesh : top - y/L = 0.082;

middle - y/L = 0.172; bottom — y/L = 0.301ccccecciiinirnnieniiicivnccnienencrarsesecsensesscasens 37
Figure 45. Contour of axial velocity (U) at x/L = 0.935 obtained on 6 million

cells. a) measured; b) SST k-w ; c) realizable k-£; d) Wilcox s k=@.......ocvcvuveveeiinnnnn.n. 38
Figure 46. Prediction of a) resistance, b) trim and c) sinkage for the DTMB 5415

T L e R P e TR By 39
Eigitre:47. JHSS concept VeSSl @ eometiy i i svaussasmnsssvssmsasest s ssnssses saasiss dopsesssmussnasas omaes 40
Figure 48. JHSS struetured surface mesh on the bare hullc.ccooi 40

Figure 49. JHSS wave profile on the hull for various NavyFOAM meshes and
experimental measurements, scaled up to full scale (full scale LBP ~950
L —— 41
Figure 50. Inboard (left) and outboard (nght) axial velocity boundary layer plots
for NavyFOAM free surface computations (OF), TENASI double-body

computations (TEN), and experimental measurements (EXP) -...cccccevveveeineeciieinieennn, 42
Figure 51. Sinkage and trim run time values plotted for three differcnt Froude

EITETRUIBERY, ... it 15 st 50006 G0 A B s S T SN AN B S A A 42
Figure 52. Fixed and free sinkage and trim NavyFOAM free surfaee plots colored

S A Cll I, .. scmsamitinsmmmns gt i meearson's s e A A 42
Figure 53. JHSS resistance for various Froude numbers predieted by experiment

AN, NAVYFOAMuvemoommmsonaumassanssnsnnssasirmsssssonssassissaamssssssssssess s sosssdsissssrasesseis snasesssss 43
Figure 54. JHSS bare hull sinkage (top) and trim (bottom) predietions for

VAGIAS DIRIC EIIIEIEER . .crccmawmsemaimes s svntsstmmaetms o mosi s s MR ST A 43
Figure 55. Surface mesh at the stcrn showing GGl region around waterjetsccccoeeeeennn.e.e. 44
Figure 56. Axial velocity eontours through the GGI modeled waterjet without

(left) and with (right) volume mesh overlayed...........ccoooeieiiioiiiiiiecceceece e 44
Figure 57. Axial velocity eontours inside the waterjets............ccooceverveiveereiinrenrensese e e 45
Figure 58. Powered JHSS free surfaee plot colored by wavce clevation...........cocceveveeeeiieenn. 45
Figure 59. Experimental photograph (left) and NavyFOAM post-processed JHSS

R ottt pn s snesiscs b AR S R S e R A N oA RO e 46

viii

Tables

Table 1. Examples of top-level RANS solvers built using the OpenFOAM toolkit
for marine propulsor applications (GGI: grid-to-gnd interpolation)............c..c.occevevvennn.e. 3

ix

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD)
capability based on Reynolds-averaged Navier-Stokes equations (RANSE) aimed at
prcdicting turbulent single- and two-phase flows around ship hulls. The CFD capability
employs a finite-volumc discretization that allows use of arbitrary polyhedral elements. The
free surfacc is captured using a volume-fraction method capable of accurately resolving sharp
interfaces. NavyFOAM has been developcd using an open-source CFD software tool-kit
(OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods
and the physical models in the original version of OpenFOAM have bcen upgraded in an
effort to improve accuracy and robustness of numcrical solutions. The details of NavyFOAM
V1.0 including the numerical methods and the physical models are described in this report.
NavyFOAM V1.0 is demonstrated for a number of flows including: underwater bodies,
turbulent free surface flows around the DTMB 5415 model and the KVLCC2 double-model.
It 1s shown that thc RANSE based approach can predict, with good accuracy, most of the
salient featurcs of the turbulent free-surface flows around the subject hulls including
resistance, wave elevation, hull boundary layer and wake.

Administrative Information

The work described in this report was performed by the Computational
Hydromechanics Division (Code 5700) of the Hydromechanics Department at the Naval
Surface Warfare Center, Carderock Division (NSWCCD). This effort has been funded by the
Department of Defense High Performance Computing Modernization Program (HPCMP)
under the Computational Research and Engineering Acquisition Tools and Environments
(CREATE) Ship’s Hydrodynamics Project.

Introduction

In the past two decades, computational fluid dynamics (CFD) has been established as
an indispensible tool for design and analysis in ship hydrodynamics. CFD has also
significantly expanded its realm, covening a broad spectrum of applications including:
resistance, powering, propulsion, maneuvering and seakeeping. The gecometrical, physical
and operational complexity involved in ship hydrodynamics applications has led to the
addition of many features and functionalities in CFD codes. Furthermore, CFD is frequently
called upon to tackle multi-disciplinary applications such as fluid-structure interaction and
hydroacoustics applications that requirc coupling of CFD codes with other computational
mechanics softwarc. Thus, general-purpose CFD codes, in attempts to cater to these diverse
needs, have become increasingly larger and more complex. Software complexity is a serious
issue which many legacy CFD codes facc today, ncgatively impacting their overall efficacy in
tcrms of quality assurance, packaging, maintenance and extensions.

The Department of Defense High Performance Computing Modernization Program
(HPCMP) office, under the CREATE Ship’s Hydrodynamics Project, has initiated an effort to
develop a CFD capability aimed at high-fidelity, high-performancc, predictions of
hydrodynamic phenomena occurring around surface ships and submarines. The ultimate goal
of the project is to develop a high-fidelity CFD capability that can drastically shorten the design

1

cycles of surface ships and submarines, by answering technieal questions on various aspects of
hydrodynamic performance of naval vessels at early design stages.

To meet the top-level requirements of the program, it was considered imperative that the
new CFD software be developed using modern software engineering practices. Among others,
it was concluded that object-oriented programming (OOP) with properly designed data
strueture and code architecture is essential to facilitate development, quality assurance (QA),
deployment (packaging/release), maintenance, and extension of the software. Thus, we started
with OpenFOAM (Wellcr et al.'), an open-source CFD software tool-kit writtcn in C++
drawing heavily upon object-oriented programming (OOP). Efforts to develop a computational
framework using OpenFOAM had started out earlier with propulsors the target applications
(Kim et al.®). The CREATE efforts have greatly benefited from our earlier works on turbulence
modeling, discretization schemes and solution algorithms. As of today, the OpenFOAM-based
computational framework eomprises a suite of modified and newly written application (top-
level) solvers for single- and multi-phase flows, utilities and physies libraries built around the
OpenFOAM CFD tool-kit. We loosely refer to the computational framework as “NavyFOAM”
in order to distinguish it from the standard OpenFOAM offenng.

NavyFOAM includes several top-level solvers, Table 1, aimed at ship hydrodynamics
applications, sRansFOAM (single-phase, steady RANSE solver), ransFSFOAM (RANSE-
based free-surface solver), and ransFSDyMFOAM (RANSE-based free-surface solver with
moving/deforming mesh), to name a few. That one has to deal with a number of top-lcvel
solvers for different applications often surprises those who are used to the idea of developing
a monolithic CFD solver that can do everything. The philosophy adopted in OpenFOAM
cschews thc monolithic approach.

This report consists of a number of sections, including:

e Technieal deseription
User’s Guide
Example Results
Utility Programs
Tutonials

Technical Description gives an overview of the theoretical formulation and the
numerical methods used in the RANSE solvers in NavyFOAM.

User’s Guide is intendcd to help users learn how to run the eodes without delving into
the details of the implementations. This chapter should be considered as an annex to
OpenFOAM'’s User’s Guide. Those who are interested only in running the top-level solvers
providcd in NavyFOAM should read this chapter and the Tutorials and ean skip the other
chapters if they want to.

Example Results presents example problems run with NavyFOAM seleceted from
various applieations ineluding surface ships and underwater bodies.

Utility Programs is an appendix that describes the top-level applications newly added
to facilitate post-processing of the CFD results obtained using NavyFOAM.

89

Tutorials given in the appendices provide step-by-step instructions starting from
setting up the case to running the NavyFOAM solvers to exporting the results for post-

processing.

Table 1. Examples of top-level RANS solvers built using the OpenFOAM toolkit for marine
propulsor applications (GGI: grid-to-grid interpolation)

Solver Features/Functionalities Applications
Single-phase, steady, RANSE, flow solver in the Underwater bodies (without
sRansFoam) 3
inertial frame free-surface effects) |
Two-phase, unsteady, RANSE, flow solver in the Surface ships with fixed
inertial or rotating frame with GGI sinkage and trim
ransFSFoam i
Propellers in open watcr
with uniform inflow
Surface ships with
dynamic sinkage and trim
ransFSDyMFoarl Two-phase, unsteady RANSE, flow solver in the prediction

inertial frame with dynamic mesh motion with GGl

Propellers with non-
uniform inflow

Technical Description

NavyFOAM employs a cell-centered finite-volume method based on a multi-dimensional
linear reconstruction scheme that permits use of arbitrary polyhedral elements including
quadrilateral, hexahedral, triangular, tetrahedral, pyramidal, prismatic, and hybrid meshes. The
solution gradients at cell centers can be evaluated by applying the Green-Gauss theorem or by
the least-square method. Spatial and temporal discretizations formally have up to sccond-order
accuracy. The volume-fraction equation is solved using an implicit solver. The discretized
governing equations can be solved using a choice of iterative linear solvers such as point-implicit
Gauss-Seidel or algebraic multi-grid (AMG) methods. Velocity coupling to ensure mass
conservation (continuity) is effected using a projection algorithm. The entire NavyFOAM solver
suite can be run in parallel using domain decomposition and a public version of MP1 (OpenMPI)
for messagc passing.

Governing Equations

The goveming equations adopted in NavyFOAM consist of the continuity (mass
conservation) equation, momentum equations, turbulent transport equations, and a volumc-
fraction equation. Which equations are solved in a top-level solver depcnds on whether the flow
is single-phase or multiphase.

Single Phase Flow

For single phase incompressible flow, the goveming equations consist of the continuity
equation, the momentum equation, and the turbulence transport equation(s). The continuity
equation can be writtcn in a differential form as:

V-V=0 (1)

The momentum equation can bc written as:

ov

AV =-IP+V-{r, (V7 4977 (2)
where ¥ is the velocity vector, P = L s the modified pressure, p is the hydrodynamic pressure,

1s the

p is the density, v, =v +v,is the effective viscosity, v is the kinematic viscosity, and v,

turbulent eddy viscosity.
Multiphase Flow

In the volumc of fluid (VOF) method, the governing equations for two-phase flow consist
of the continuity cquation, the momentum equation, the convection equation for volume fraction,
and the turbulence transport equation(s). The continuity equation is given by

V-V=0 (3)

The momentum equation is given by

a(pV)

o +V-(pVV)=-Vp+V. {‘ueﬂ(VV+VI77)}+ pE+axVy (4)

where 7 is the volume fraction, g i1s the gravitational acceleration vector, O is the surfacc
tension coefficient, and X is the interface curvaturc, p , = u+ p,is the effective viscosity, 4 is
the dynamic viscosity, and g, is thc turbulent eddy viscosity. The density is calculated by
p=yp +(1-y)p,, and the dynamic viscosity by u = u(u,, u,,). The subscripts *“1” and “2”
refer to the two phases or fluids. The convective transport equation for volume-fraction is

dy -
L +V-Vy)=0
B V) (5)
Turbulence Models

NavyFOAM allows users to choosc from the entire turbulence model suite available in
OpenFOAM. NavyFOAM additionally offcrs a Wileox's k-0 turbulence modcl (Wilcox®), a
modified SST k-0 model, and a custom version of Spalart and Allmaras’ onc-equation model.
Wall models are implcmented in thcse newly availablc turbulence models so that thc models can
be used with either a wall-resolving (y+ < 1) or a wall-skipping (y+ >30) mesh.

Spatial and Temporal Discretization
Gradient Schemes

Gauss Integration. Thc gradient can be calculated using the Gauss theorem

IV¢dQ= Jn(odl' 6)
QR I,
Assuming the gradient is constant in a ccll, (6) can be approximated as
] e
Vo, z_zq)fsf (7)
IQe I f

where the subscript P denotes the cell center, |Q, | is the volume of the ccll, and S‘, 1s the arca

vecetor of each face of the cell.

Cell-Based Calculation. In a cell-based approach, the face-center value ?/in (7) is

calculated using the cell-center value of ¢ in neighboring cells, as shown in Figure 1. This
approach is used in OpenFOAM.

A‘Vé

N

<X

LA

Figure 1. Stencil in cell-based gradient calculation in two-dimensions

Node-Based Calculation In a node-based approach, the nodal value of ¢ (red circles in
Figure 2) is first calculated using all neighboring cells of the node, then thc facc-center value ¢,

in (7) is calculated using nodal values. As a result, the stencil involved in the gradicnt calculation
(all blue squares in Figure 2) is much larger than that in the cell-based approach.

A4
Y

AV

Figurc 2. Stencil in node-based gradient calculation in two-dimensions

Two types of node-based gradient calculations, i.e. the Pscudo-Laplacian-Weighted-
Averaging (PLWA) and the Inverse-Distance-Weighted-Averaging (IDWA) have been
implemented in NavyFOAM. They differ in the way that the cell-centered volume field is
interpolatcd to thc node point field. More details are described later.

Least Squares. The concept of least-squares calculation of gradients is easily illustrated
in two-dimensions. Therc should be no difficulty to extend it to three-dimcnsions. Supposc we
want to calculate the gradient of ¢ at the center of cell i, see Figurc 3, the neighboring cells are &
=], 2, and 3.

g/
<A

Figurc 3. Stencil in least-squares gradient calculation in two-dimensions

In a general form, let N, be the total number of neighboring cells, the neighboring cell-

center value of ¢ can be written as a Taylor expansion about the center of cell i.

o, =9, +(Vo),-AF, +€, fork=1,..., N,

)

where &, represents the higher-order errors. Defining a total error as the sum of weighted errors

using

Ny

Ezzg?k
k=1

(9)

where w, is the weighting factor. Omitting the index for brevity, Equation (8) can be written as

Ga =P~ VOB G . W
or in the form of Cartesian components
P Ax,
Eu =P TP)Yy Ay,
P & fork=1,
Substituting (10) into (9) and setting
a—E=0, a—E=0, and a—E=0
29, o9, 09,

to minimizc the total error, one has

(10)

A Ny Ny i Ny i
Z Wi (AxA)2 Z Wi (Ax‘ Ayk) Z Wi (Ar,‘Az‘) Px Z W,‘A.\" ((Pk = ¢)
k=1 k=l k=1 k=1

N N, Ny Ny
Zwk(AxkAyk) Zwk(Ayk)z ZWA (Ay Az) o, |= Zkayk((ﬂk -¢) (i)
k=1 k=1 k=1

k=1

Ny Ny Ny Ny
Zwk(AxkAzk) Z‘Vk(A)’AAzk) Zwk(Azk)2 . | ZWAAZ&((PA - ¢)
k=1 k=1 k=1 a2 k=1

The solution to the liner system in (11) gives the gradient ealeulated in the least-squares sense.
Convection Schemes

In finite volume methods, the eonveetion term ean be ealculated using the Gauss theorem

[v-wpyda= [i-Zp)dr (12)
Q, T,

The surfaec integration in (12) can be approximately calculated as
[i-p)dr =Y .(7-5), 0, (13)
3 s

The eonvection scheme dctermincs how the face-center value ¢ is ealculated. The most widcly

referenced boundedness criterion using the normalized variable approaeh is Gaskell and Lau's
Conveetion-Boundedness Criterion (CBC) (Gaskell & Lau®).

Convection Boundedness Criterion (CBC). The concept of CBC is easily illustrated in
one-dimension as shown in Figure 4, where D is the donor eell, U is the upstream eell, and 4 is
the aceeptor eell.

P 4

Figure 4. Illustration of nodes and face in onc-dimension

Dcfining a normalizcd variable

0—@
P4~ Py

b

7=

wc thus have

2 =B — Py 0 0

¢D=— =—

S/
D= Py and Pa—Pu

Based on the normalized vanables, CBC states the following local boundedness criterion

Pas@rsl g @, €[0,1]
(14)

Py =%y for ¢, ¢[0,1]

The graphical representation of CBC is often shown in the normalized variable diagram (NVD)
(Leonard®) of Figure 5.

¢r' +

1 7

Figure S. Normalized vanable diagram (NVD) with CBC (the shaded region)

In general, the normalized face-center value can be written as a funetion of the
normalized value of the donor cell

@, = f(Pp) (15)

Linear Schemes. If the funetion f in (15) is linear, the seheme is called a linear scheme.
Examples of linear schemes include:

Central differencing (CD) scheme

I DU
Br=sPnty (16)

Upwind differencing (UD) scheme
5/ = éﬁn (17)
Downwind differencing (DD) scheme

9, =1 (18)

Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme

= By)
== s 19
?; 4991) 8 (19)

Warming & Bcam Second-Order Upwind (SOUD) seheme

. Hae
& =Z¢o ‘*‘g (20)

The NVD of these sechemes and the CBC region are shown in Figure 6.

- uo
1 (1 y
1 ’,»' _ D
1 N\ s -
T CiRGaEseetr T OD
-
o .
P ”: |
s
B l
QUICK - ‘
1 v

Figure 6. NVD of lincar schcmes with CBC

Nonlinear Schemes. The order barrier (Godunov®) for linear schemes implics that the
CBC schemes with aecuracy of sccond-order or above must be nonlincar schcmes, i.e. the
function f/ in (15) must bc nonlinear. Hereafter, we summarize some of the CBC schemes
(limited schemes in NavyFOAM).

4
vanLeer Scheme (van Leer)

5 20-0°, @€[0,1
f(¢)={ P Pl @1

P, ¢ #(0,1]

The NVD of the sehemc and the CBC region arc shown in Figure 7.

10

4

v
a1

Figure 7. NVD of vanLeer scheme with CBC

Gamma Scheme (Jasak et al.®)

-0 -(1+39p. §<[0, 8]
: oellll im Lepsl
B -z

The NVD of the scheme and the CBC region are shown in Figurc 8.

(o) =

=
Sy

!

Figure 8. NVD of Gamma scheme with CBC

HYPER-C Scheme (Leonard’)

~

i min(l, 2-¢), ¢€[0,1]
(¥) ={ ©r . 23
i 7210,1] =9

The HYPER-C scheme rcquires that the local Courant number C, <1. The NVD of the scheme
and the CBC region are shown in Figure 9.

11

16 7

slope = -
pe c,

Figure 9. NVD of HYPER-C scheme with CBC

Ultimate-Quickest (UQ) Scheme (Leonard’)

f((?)'): min{SCLﬂl-ﬂm’ﬁlYﬂiR (((5)}7 (56[0,1] (24)
P, ¢ €[0,1]

The seheme requires that the loeal Courant number C, <1. The NVD of the seheme and the

CBC region are shown in Figure 10.
BC, $+(1-C/ N6#+3)

v

Figure 10. NVD of UQ seheme with CBC

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Ubbink&

lssa'01
f(@)= 7ffm‘|>rn i B MR 7)Mo (9) (25)

where y, =min

. [1+cos26, . .)
——, 1]. 8, is the angle between the normal unit veetor of the front
(interface between two phases) and the vector pointing from D to A, see Figure 11.

12

Donor cell (D)

Acceptor cell (A)
Figure I1. Angle 0,
The NVD of the scheme and the CBC region are shown in Figure 12.

8C, P+(1-C X6$+3)
uQ

N
v

Figure 12. NVD of CICSAM scheme with CBC

High Resolution Interface Capturing Scheme (HRIC) (Muzaferija & Peric”) Let

25, §<[0.4]
@ =11, Feli
Al and

L@)y=r @)+ (=700 0 ¥, =+llcosé, |,

The HRIC scheme can be written as

fz(‘?’% C/ <0.3
~ 0.7-C, ~ (07-C,)~
S(@)=y =+ i@y +\l——7Fjo, 03=<C, <07 (26)
?, Cs50.7

The NVD of the scheme and the CBC region are shown in Figure 13.

13

1 3

t [5\:) AN D) 7.@)

Figure 13. NVD of HRIC scheme with CBC
Modified HRIC (MHRIC) (Park et al.’>) Let

29, ¢€[0,7]
L@ =11, ge[1,1]
oo PO g

- [min(2, @) Belo.1]
f(@) {6, 7 2[0.1]

MHRIC can be written as
@)=y, @)+ A=y) fo(P) (27)

withy, = A/ | cos 6, | . The NVD of the scheme and the CBC region are shown in Figure 14.

p G0 N CH R A

QuIcK, -~

v

|

% 3

1 @

Figure 14. NVD of MHRIC scheme with CBC

Inter-Gamma Scheme (interGamma) (Jasak & Weller')

& 2(32 +3(3, (z € [01 ';—]
f(@)=11 gelf,1] (28)
@, @ «[0,1]

The NVD of the scheme and the CBC region are shown in Figure 15.

, i [15 ;) /f@)

i

I

Figure 15. NVD of inter-Gamma scheme with CBC

Modified inter-Gamma Scheme (interGammaM) Let

20" +3p, ¢€[0,1]
£1(@) =41 pelt.1]
?, ¢ ¢[0,1]

be the original inter-Gamma scheme, which can be modified as follows

11(®), €, <03
F =i pyli= T 35E, 207
P, €, >0i1

The NVD of the scheme and the CBC region are shown in Figure 16.

BT e) e

\d
{
v

a1

‘i @ 1:
Figure 16. NVD of interGammaM scheme with CBC

(29)

Modified inter-Gamma Scheme (interGammaMD) Let

-20° +3¢, Pe[0,1]
gel3.1]

L@ =11
P, ¢ £[0,1]

be the original inter-Gamma scheme, and

L@ =y (@) +A-7)0 7, =[Tcost,] (30)
The interGammaMD scheme can be written as
£2(@), C, <03
f@)= %A(@H(l-oﬁ’)a, 83 C, <07 31)
5’ C/ >0.7

Interpolation Schemes
Cell-based Surface Interpolation Schemes.

In cell-centcr-based finite volumc mcthods, it is often required to calculate the face-
centcr value. The interpolation schemes needed for non-convection terms will be introduced in
this section. The situation is illustrated in Figure 17. The owner and ncighbor cells of the face
may or may not be located within a mesh block of a single processor.

AY
Owner processor ‘\ Neighbor processor

i Processor interface

\

—
O Il
- ks Neighbor cell

\
Owner cell Neighbor cell :

(a) internal face (b) coupled processor face

Figurc 17. Cell-based interpolation of face-center valuc

Linear Interpolation Surface Interpolation Scheme. The linear intcrpolation calculates
the face-center value as

@, = Ao, +(1- g, (32)

where 4 1s the weighting factor calculated as

16

» |ﬁj'AF~f|
|7y - Ay |+, - ATy |

The lincar interpolation scheme may producc large errors due to non-orthogonality and skewness
of unstructured meshes.

reconCentral Surface Interpolation Scheme. The face-centcr value can be reconstructed
using both the value and the gradient at neighboring cell centers.

] - -
(/)[=E[(/)I’+(V(/))P'ri’[+ (/7~+(V(/’)~'r~/] (33)

Upwind Deferred Correction (UPDC) Surface Interpolation Schemes. To improve
stability, the face-centcr value can sometimes be calculated using the concept of deferred
correction (Khosla & Rubin'?; Hayase et al.'’%).

Fou

o, =0, + (@) —o”)" (34)
FOu

where @;°" is the value calculated using a first-order upwind scheme, and ¢} is the value

calculated using higher-order interpolation schcmes. The superscript “old™ reprcsents the
previous time or iteration step. The candidates for the higher-order scheme may include the
reconCentral scheme and some of the higher-order limited schemes in the next section.

The first-order upwind scheme can be written as
¢, =sign"(F,)p, +[1 -sign"(F))lp, (35)
where F, =i, - 17, 1s the volume flux through the face, and

1, F,20

w40 1%
» Fy

The higher-order normalized variable based limited schemies can be written as
H 1
9y =0p + S FNOy =) (36)

where ‘P(r) is the limiter function. Substituting (35) and (36) into (34) yields

1 o
v+ [SHONew ~0p)] ¥, F:20
¢f =] i (37)
Py +[;l}1(r)(¢p _(/)N)]o > F[<0

17

Node-Based Surface Interpolation Schemes.

We consider a face of any polyhedral eell

Figure 18. Node-based interpolation of face-center value

Let N, be the total number of vertices of faces, the face-ecenter value is ealeulated as the average

of the nodal values
l N,
=— A 38
D, N, ;(P . (38)

The nodal values are ecaleulated using volume-to-point interpolation deseribed in the following
section.

Volume-to-Point Interpolation Schemes

It is easier to illustrate in two-dimensions and the extension to three-dimension 1s rather
straightforward.

AVA

Figure 19. Steneil in eell-based gradient ealeulation in two-dimensions

In volume-to-point interpolation, the nodal value ¢, is caleulated as a weighted

averaging of surrounding eell-eenter values
N, N,
0, = 2 (PeiWei 1 2 W) (39)
i= j=1

where N is the total number of neighboring cells of node n, w,_, is the weighting factor.

Volume-to-Point Interpolation Based on PLWA. In Pseudo-Laplacian-Weighted-
Averaging (PLWA) (Holmes & Connell'®; Frink'’; Kim et al.'®), the weighting factors in
Equation (39) are ealculated by solving the following optimization problem.

18

Giving the constraint
N,
L(x)= ZW (x.,—-x,)=0

i=|
Eiy)= Z w, (¥, —¥,)=0 (40)
L(") z‘ ("c:_“n _0

we need to find the weighting factors w_ that minimize the cost function

N,
C=Z(r Aw, Y (41)

where 7, = (x_,, y.,, z.) is the position vector of the cell center, 7, =(x,, y,. z,) is the position

veetor of the node n, and r,, =7, 7, |= \/(x(,,', —x,) +(y., -y, +(z.,-2) . The Aw,, is

related to the weighting factor by w_, =1+Aw_ .
Using the method of Lagrange multipliers, the Lagrange function is defined as

AW, s Wy ooy Won s As A,y A.)= C =24, L(x,) + A, L(y,)+ A.L(z,)] (42)

G, 12
The optimal solution is found by solving the following equation

Vu‘_J.u‘_». W, A Ay AA(M@I’ 7 LR cN ’ '1 y‘/{:):O (43)

which can be written in matrix form

[diag(r*)] —[Ar]{[AwW]| | O
[(A (0] J[kH—R] i

where

(diag(r')]=|

19

xc.l E xn yc,l = yn zc.l = zn

x¢.2_xn yc.2_yn zc.z—zn

x(‘.‘V, —xn yt‘.N, =Y zc.‘V, -z,

R‘ Z:: (xc,l it xn)
R=|R,|=|Y (., -»)
R| | ¥z, -2,

Solving the linear system of equations we obtain

=R g
(45)

Aw =[diag(r*)]'[Ar]r
where

[11=[Ar] '[diag(-")]"'[Ar]

Volume-to-Point Interpolation Based on IDWA. In Inverse-Distance-Weighted-
Averaging (IDWA), the weighting factors in Equation (39) are calculated based on the distance
between the node and each neighboring cell center.

—

Weir= "3 (46)

with

’;.l = ;2'.1 —Fn |= \/(xc.i —xn)2 +(y¢-., —y,,)2 +(Z¢_J —Z”)Z

20

Diffusion Schemes

In finitc volume methods, the diffusion term can be calculated using thc Gauss theorem

[V-Vea= fi-(veorar 7
Q, ¥,
The surface integration in (47) can be approximately calculated as

[3-0Vodr = T i-9), 5, =Z<7r5f’[%) .
r' 7 f g

Zf

Owner celi
face

Neighbor cell

Figure 20. Calculating face-normal gradient

The face-normal gradient can be calculated as

o9 P —Pr &
= | it T a8)
(811)/ | (49)

snGrad correction

where C‘, =1, —Afy /| Ary, | is the non-orthogonal correction vector, and

(V(P)/ =AVe, +(1-4)Ve,
A 1s the inverse-distance weighting factor.

Solution Algorithms
Pressure-Velocity Coupling

Solving the Pressure Equation. The momentum equation can be written in discretized
form as a system of linear equations

AV +¥Vp = F (50)

where V' is the velocity vector,

p’ is the guessed pressure,

Vp' = jvp‘dQ
Q

A=D-B=(D, +D,)-B is the matrix of the linear equations,
D=(D, +D,)=diag(A)

D, = partof diag(A) contributed from internal faces

D, = part of diag(A) contributed from boundary faces
- B = A - D = off-diagonal part of A,

~

j_” = f;,, + j_”,x = the source vector absorbing any explicit term and source term,

2

., =part of source vector contributed from internal faccs, and

f,x = part of source vector contributed from boundary faces.

Equation (50) can be writtcn as

~

(D-BYW +Vp' =7 (51)

Giving guessed pressure, p*, Equation (51) is solved for velocity, ¥°. This is the
predictor step of the SIMPLE or PISO method. Because the velocity obtained from the predictor
step doesn’t satisfy the continuity equation, both the pressurc p° and velocity ¥ necd to be
corrected.

In order to derive the discretized pressure equation, the following algebraic manipulation
was applied to the momentum equation. The matrix A of discrctized momentum equations can
be written as

A=D+D™™ _ DI _B=(D, + D,)+ D" - D" _B (52)
with

D" = component - average part of diag(A) contributcd from boundary faces .
Let

D,=D,+D™
and

B,=(B+D" -D,)

22

A=(D, +DI")-(B+D™" -D,)=D,-B,

Now, Equation (50) can be written as

~

(D, -B, W +Vp' =71 (53)

Let V™ and p” be corrected velocity and pressure, respectively. They should satisfy the
diserctized momentum equation (53), i.e.

(D, - BD)V“ + 6.17“ = (54)
which can be approximated as
b7 B, A= (55)

Because D, in (55) is a diagonal matrix, it is trivial to solve (55) to obtain

-

7 =D}B,7 + f)-DVp" =¥ —D:Vp" (56)

where V = D, (B, V" + f) is the pseudo-velocity vector.

Substituting (56) into the continuity equation, V-¥" =0, we obtain the following discretized
Poisson equation for pressure

V-(D}Vp") =V (57)

It i1s shown later that Equation (57) incorporates the idea of the Rhic-Chow momentum
interpolation scheme.

In the PISO method, consecutive corrector steps may be usced to correet pressure and
velocity, the momentum equation that is satisficd at the (k+1)-th steps 1s

T S (58)
thus

PA = DB, P + 1) - DIpH = 1 — D! (59)
where 7 = D, (B, V" + 7). Note that k = 0 represents the predictor step, i.e. V° =V".
Substituting (59) into the continuity equation V- V**' =0 yields

V(D}Vt =V.V (60)

2

User’s Guide

This section provides information for users to help with running any of the updates
developed specifically as a part of NavyFOAM V1.0. In addition, there is a supplcment to the
original OpenFOAM User’s Guide contained in Appendix A that could be useful to readers. For
more detailed information on the OpecnFOAM code and settings consult the OpenFOAM Uscr’s
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. In addition, to aid users
scveral utilities have been developed to aid in post-processing NavyFOAM results, which are
described in Appendix B. Finally, tutorials have bcen developed that aid a user in running the
codes which include: a hid driven cavity problem, a fully submerged axisymmetric body and the
Wigley hull with free surface in Appendices C, D and E, respectively. It is recommended that
new uscr’s go through the tutorials to learn the preferred settings to usc with the solvcers.

Gradient Schemes
Navy Least Squares Gradient Schemes

The gradient scheme is specified by a sub-dictionary entry gradSchemes in the system
finite volume dictionary file fvSchemes. Users may refer to the OpenFOAM User Guide Ver. 1.5
Section 4.4.3 on page U-110 for morc details about this sub-dictionary. Figure 21 illustrates an
abbreviated examplc. The default gradient scheme is the one using Gauss theorem with the face-
center value calculated by linear interpolation. The schcme used in calculating the gradient of
prcssure is NavyLeastSquares — where the gradient is calculated in a least squares sense, more
details regarding the NavyLeastSquares gradient scheme can be found in the Technical
Dcscription scction.

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

gradSchemes

{
//- default scheme

default Gauss linear;

//- gradient scheme for pressure p

grad (p) NavyLeastSquares;

Figure 21. Example of gradSchemes sub-dictionary

24

Interpolation Schemes
Cell-based Surface Interpolation Schemes

reconCentral Surface Interpolation Scheme The reconCentral surface interpolation
scheme calculates the face-center value of ¢ using both the value and the gradient of ¢ at the
center of thc owner and neighbor cells. The following example in Figure 22 shows how to
specify the interpolation schemes in the sub-dictionary entry interpolationSchemes of thc
system finite volume dictionary file fvSchemes. Users may refer to OpenFOAM User Guide Ver.
1.5 Section 4.4.1 on page U-108 for more details about this sub-dictionary. The default scheme is
lincar interpolation, where the face-center value is calculated as a weighted averagc of the value
at the center of the owner and neighbor cells. The weighting factors are based on inverse
distance. The reconCentral scheme is used to calculate the face-center value of u.

Dictionary file:

$ (CASE DIR)/system/fvSchemes

Sub-dictionary:

interpolationSchemes

{
//- default scheme is linear interpolation
default linear;
//- surface interpolation of U
interpolate (U) reconCentral;
}

Figure 22. Example of interpolationSchemes sub-dictionary

reconCentralDC Surface Interpolation Scheme Thc reconCentral i1s almost a second-
order interpolation scheme. Besides calculating the surface interpolation at the facc-center, it
may also be used to improve the accuracy in discretizing the convection term in the momentum
equation using deferred correction. The following examplc in Figure 23 shows the sub-dictionary
divSchemes in the finite volume system filc fvSchemes. Users may refer to OpenFOAM User
Guide Ver. 1.5 Scction 4.4.5 on pagc U-111 for more details about this sub-dictionary. The
convcction term is integrated using the Gauss theorem and the face-ccnter velocity U in the
convection term takes thc Upwind Deferred Correction (UPDC) form using the reconCentral
scheme to calculate the higher-order correction. More details regarding UPDC can be found in
the Technical Description Section.

Dietionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in momentum equation

div(phi, U) Gauss reconCentralDC;

Figure 23. Example of divSchemes sub-dictionary
Node-based Surface Interpolation Schemes

reconPLWA Surface Interpolation Scheme The reconPLWA surface interpolation
scheme calculatcs the face-center value as an averagc of thc nodal values on the face. The nodal
value is calculated from cell-center values using a volume-to-point interpolation schcme based
on Pseudo-Laplacian-Weighted-Averaging (PLWA). More details of PLWA ean be found in the
Teechnical Deseription. The following example in Figurc 24 shows the sub-dictionary entry
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-108 for more details about this
sub-dictionary. The default interpolation scheme is linear. The next line of the dictionary shows
that the reconPLWA scheme is used to calculate the face-center value of U.

Diectionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

interpolationSchemes
{
//- default scheme is linear interpolation

default linear;

//- surface interpolation of U

interpolate (U) reconPLWA ;

Figure 24. Example of interpolationSchemes sub-dictionary

reconIDWA Surface Interpolation Scheme The reconIDWA surface interpolation
scheme caleulates the face-center value as an average of the nodal value on the face. The nodal

26

value is caleulated from eell-eenter values using a volume-to-point interpolation scheme based
on Inverse-Distance-Weighted-Averaging (IDWA). Morc details of IDWA ean be found in the
Technical Description. The following example in Figurc 25 shows the sub-dietionary entry
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-108 for more details about this
sub-dictionary. The default interpolation scheme is lincar. The reconIDWA scheme is used to
calculate the face-center value of U.

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

interpolationSchemes
{
//- default scheme is linear interpolation

default linear;

//- surface interpolation of U

interpolate (U) reconlIDWA;

Figure 25. Example of interpolationSchemes sub-dictionary

Convection Schemes
Convection Boundedness Criterion (CBC) Schemes

The following NVD (normalized variable diagram) based CBC schemes are particularly
useful in capturing interfaces between two fluids, e.g. air and water, in the two-phase flow solver
of NavyFOAM. More details of CBC schemes can be found in the Technical Description.

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) The
following example in Figure 26 shows the sub-dictionary entry divSchemes of the system finite
volume dictionary file fvSchemes that specifies the divergence schemes for the convection term
in the transport equation of volume fraetion (gamma). In this examplc the eonveetion term is
integrated using the Gauss theorem and thc CICSAM scheme is used to ealeulate the face-center
value of gamma. Uscrs may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-
111 for more details about this sub-dictionary.

Dictionary file:

$ (CASE_DIR)/system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi ,gamma) Gauss CICSAM;

Figure 26. Example of divSchemes sub-dictionary

High Resolution Interface Capturing Scheme (HRIC) The following cxample in
Figure 27 shows the sub-dictionary entry divSchemes of the system finitc volumc dictionary
file fvSchemes that specifies the divergence schemes for the convection term in the transport
cquation of volume fraction (gamma). In this cxample, the convection term is integratcd using
the Gauss theorem and the HRIC scheme is used to calculate the face-center value of gamma.
Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-111 for more
details about this sub-dictionary.

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi ,gamma) Gauss HRIC:;

Figure 27. Example of divSchemes sub-dictionary

Modified HRIC (MHRIC) The following example in Figure 28 shows thc sub-dictionary
entry divSchemes of the system finite volume dictionary file fvSchemes that spccifies the
divergence schemes for the convection term in the transport equation of volume fraction
(gamma). In this example, the convcction tcrm is integrated using the Gauss thcorem and the
MHRIC scheme is used to calculate the face-center value of gamma. Users may refcr to
OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-111 for more details about this sub-
dictionary.

28

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi,gamma) Gauss MHRIC;

Figure 28. Example of divSchemes sub-dictionary

Inter-Gamma Scheme (inferGamma) The following example in Figurc 29 shows the
sub-dictionary entry divSchemes of the system finite volume dictionary file fvSchemes that
specifies the divcrgence schemes for the convcction term in the transport equation of volume
fraction (gamma). In this example, the convection term is integrated using the Gauss theorcm
and the interGamma scheme is used to calculate the face-center value of gamma. Uscrs may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-111 for more details about this
sub-dictionary.

Dictionary file:

$ (CASE DIR)/system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi,gamma) Gauss interGamma;

Figure 29. Example of divSchemes sub-dictionary

Modified inter-Gamma Scheme (interGammaM) The following example in Figure 30
shows the sub-dictionary cntry divSchemes of the system finitc volume dictionary file
fvSchemes that spccifics the divergence schemes for the convection term in the transport
equation of volume fraction (gamma). In this example, the convection term is integrated using
the Gauss theorem and the interGammaM scheme is used to calculate the face-center value of
gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-111 for
more details about this sub-dictionary.

29

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi,gamma) Gauss interGammaM;

Figurc 30. Example of divSchemes sub-dictionary

Modified Inter-Gamma Scheme (interGammaMD) The following example in Figure
31 shows the sub-dictionary entry divSchemes of the system finite volume dictionary file
fvSchemes that specifies the divergence schemes for the convection term in thc transport
cquation of volume fraction (gamma). In this example, the convection term is integrated using
the Gauss theorem and the interGammaMDp scheme is used to calculate the face-center value of
gamma. Users may refer to OpenFFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-111 for
more details about this sub-dictionary.

Dictionary file:

$ (CASE_DIR) /system/fvSchemes

Sub-dictionary:

divSchemes
{
//- convection term in gamma equation

div (phi, gamma) Gauss interGammaMD ;

Figure 31. Example of divSchemes sub-dictionary

30

Example Results

Results are demonstrated for a fully submerged axisymmetrie body, Body-1, the
KVLCC2 tanker without a free surface using the double body approximation, DTMB Model
5415 with both fixed sinkage and trim as well as dynamie sinkage and trim and the Joint High
Speed Sealift (JHSS) eoneept surface ship with and without waterjet propulsion.

Body-1

This seetion involves using NavyFOAM’s steady, ineompressible Reynolds Averaged
Navier-Stokes (RANS) solver for a 3-D body-of-revolution referred to as Body-1. The RANS
equations are solved using NavyFOAM'’s k-omega SST turbulence model. Only half the body is
solved, as symmetry is assumed, and the domain is non-dimensionalized by length. The
Reynolds number (Re) based upon the body length is 6.6 million. The boundary eonditions used
for these eomputations are:

Defined fixed turbulent quantities (k, omega, nuTilda) and veloeity (U) at inlet
Defined pressure (p) at outlet

Zero gradient for all quantities at farfield boundaries

nuTilda = 0, k ~ 0, and omega set to zero gradient at the walls

A side view of the ONR Body | geometry can be seen below in Figure 32.

Figure 32. Body-1 geometry

Computations were done on unstruetured meshes that eontain tetrahedral (in the flow
field) and prism (in the boundary layer) elements. Grids for these eomputations typieally
eontained approximately 2 million eells total. The left of Figure 33 shows an unstruetured
surface mesh on the body and the symmetry plane, and the right side of Figure 33 shows a
surfacc mesh with a span-wise cross sectional cut of the volume mesh at the midbody.

31

Figure 33. Surface mesh on the body and symmetry plane (left) and surface mesh with volumec
mesh cross cut (right)

The computational domain is split into many domains to allow the computations to be run
in parallel. The domain is split using the METIS domain decomposition method. Typical steady
state run times for this geometry arc 3-5 hours depending on the number of domain partitions.
Steady state convergence is assumed when the forces (pressure and viscous) on the body change
by a negligible amount from one iteration to the next. Figure 34 shows results from NavyFOAM
computations.

Figure 34. Axial velocity (Ux) contours on the symmetry plane and pressure (Press) contours on
the hull

One can notice that thc stagnation point is qualitatively predicted well at the nose of the
body. The velocity slows to zcro and the pressure on the body is a maximum at the nose. While
the drop in pressure associatcd with the acceleration of the fluid around the shouldcr of the bow
is also predicted correctly. Computations also show the flow remaining attachcd along the body
leaving a wake after the stern.

Figure 35 shows some of the quantitative results from the NavyFOAM computations
compared to experimental measurements.

32

6.0E-03 1

5 5€.00 09f NavyFOAM
50603 f o8} & EipData
45E00 07k
4.0E-03 o6}
3 5E-00 [1E-]

O J0E-03 O 04

2 5e-03
2 0E-03

1 5€-03

1.0E-03

5 0E-04

0.0E+00 1 1 1 1 L 1 1 1 L e L 1 1 il I 1 1 |
0' 02 03 04 05 06 07 08 D9 1 0 01 02 03 04 05 06 07 08 09 1
x/L wL

Figure 35. Skin friction cocfficient (Cy) and Pressure eoeffieient (C,) plotted along the length of
the body

In Figure 35 there is a slight disagreement in predieted and measured Cj at the tail of the
body, but the trends are matchcd well. The NavyFOAM C,, predictions match experimental
mcasurements wcll along the body.

Figure 36 below shows comparisons of eomputed and measured boundary layer profiles
at various loeations along the body.

Leoty 10 21084 a0 320000

My F OAM
& Exp Dais

NavyFOAM
2s) 7 lomons 25t

NavyFOAM
a Emp Dota

R
rR
>
T
R
w
T

Figure 36. Axial veloeity boundary layer plots at x/L = 0.755 (left), x/L = 0.846 (middle), x/L =
0.934 (right)

The axial veloeities are non-dimensionalized by the free strcam velocity and boundary
layer lengths are non-dimensionalizcd by the radius. NavyFOAM computed boundary layer
velocity profiles mateh experimental measurements very well at various locations along the
body.

In conelusion, this effort shows that NavyFOAM has the eapability to successfully
predict quantitative and qualitative charaeteristics for a body-of-revolution, as demonstrated on
the Body-1. The RANS computations were carried out successfully on multiple processors on

unlsgructurcd meshes. Results for non-body-of-revolution hull forms can be found in Delaney et
al. .

33

O

KVLCC2

The KVLCC2 is a tanker used for eode validation by many organizations and as a part of
several international workshops. The stern of the KVLCC2 with predicted streamlines is shown
in Figure 37, flow is from left to right.

Figure 37. Stern flow of the KVLCC2

We ran sRansFOAM for this double-body flow case in which the free surface is replaced
by a symmetry plane. We deliberately ehose to use two unstructured meshes to evaluate spatial
aceuraey of the predictions. One of them, shown at the left of Figure 38, is a hybrid
unstruetured mesh generated using SolidMesh developed at the SimCenter of the Mississippi
State University. The mesh consists of prisms with triangular bases near the hull surface and
tetrahedral in the rest of the domain. The total eell eount is approximately 8 million. The other
mesh, shown at the right of Figure 38, is a hexahedron-dominant unstruetured mesh generated
using the snappyHexMesh utility available in the standard OpenFOAM paekage. With the latter,
we put in three-levels of embedded fine-mesh bloeks to better resolve the near-body region. Its
total number of eclements 1s a little over 3 million. The near-wall mesh resolutions for both
meshes are such that the distanee from the wall is larger than 40 wall units (y* > 40) over a large
portion of the hull surface. So, the wall function approach was employed to provide the
boundary eonditions for the momentum equations and the turbulence equations. Wileox’s k-o

model (Wileox®) was used for turbulenee elosure for its good traek reeord for this elass of flows
(Kim and Rhee™).

Figure 38. Grids used for the KVLCC2

The contoﬁrs of mean axial veloeity (U) at the propeller plane (x/L = 0.9823) are shown
in Figure 39 for the two meshes. As ean be seen, the charaeteristie shape of the U-eontours

34

(“hook™-shaped or “rabbit’s” ear-like) is closely captured by both meshes. The contours of
turbulent kinctic energy at the samc plane are depicted in Figure 40. The region of high
turbulent kinetic energy, which originates from the upstream boundary laycr and overlaps with
the region of low axial velocity depicted in Figure 39 is reproduced reasonably well by the
computations, although their peak valucs are somewhat under predicted. The overall prediction
accuracy shown here with the unstructured meshes used in this study is rcmarkably good. More
details on these calculations can be found in Kim et al.'.

EFD1loe ot al (2003)
08 0 06 B 04 T2 2 0.0 008 008 004

0
Y

Figure 39. Contour of axial velocity at x/L = 0.9825 predicted on thc two meshes. Top - hybrid
(prism + tet) unstructured mesh; Bottom — snappyHcxMesh

Figure 40. Contour of turbulent kinetic energy at x/L = 0.9825 predicted on the two meshcs. Top
— hybrid unstructured (prism + tct); Bottom - snappyHcxMesh

DTMB Model 5415
Fixed Sinkage and Trim

These computations were carried out using ransFSFOAM for a single Froude numbcr of 0.28
using threc different isotropic eddy-viscosity based turbulence models including the realizable 4-
£(Shih ct al.*®), SST k-@ (Mcnter”’) and Wilcox’s k- (Wilcox®) modcls. The computational
meshes werc generated using GridPro (www.gridpro.com), a commercial meshing package well
known for high-quality hexahedral meshes. Great carc was taken to ensurc that such salicnt
features as the hull-gencrated waves, the boundary layer along thc entire hull, and the near-wake
are adequately resolved. To check grid-dependency of the solutions, three systematically refined
hexahedral meshes were used with 13 million (finc), 6 million (medium), and 3 million (coarse)
clements. One of the grids uscd 1s shown in Figure 41.

3%

Figure 41. Grid for DTMB Model 5415

Although a time-marching, transient solution algorithm is employed in ransFSFOAM,
our goal was to obtain steady-state solutions. An iterative implicit solution algorithm employed
in ransFSFOAM greatly aceelerated solution convergence by allowing us to use a fairly large
time-step size. The transient computations were continued for sufficiently long periods of time
until not only the global quantities, such as the forees and moments acting on the hull, but also
other flow features like wave elevation, hull boundary layer and wake, all reach steady states.

Figure 42 illustrates the wavc pattern predicted with the SST k- model result on the 6
million cell mesh, along with the measured one. Figure 43 shows the wave elevations along the
three longitudinal euts (y/L = 0.082, 0.172, 0.301) obtained using the SST k- model on all three
meshes. First of all, the results indicate grid-convergenee of the predictions, all of which are in
cxccllent agrecment with the data. The rcsults obtained using three different turbulence models
on the medium (6 million cell) mesh are shown in Figure 44. The differences among the three
results are measurable yet small. The realizable k-& model results appreciably deviate from the
other two k- model results.

0.2

0 028 0.5 0.7 j 1.2%
x/L,,

Figure 42. Contour of wave elevation for DTMB 5415 with SST - model result on the 6
million eell mesh

36

00y — —_— S fay — ! m .

mens. 13 Million
= —— 13 Million o 6 Million
<--- 6 Milllon . 3 Million
- 3 Million |
O DOk | O
e + I3 [1) n‘ux’L” 0]) TiE e 1 o (0] Bh B I T T =
— —— o ey
1
T‘! "'—’\Af/_/\/'ﬂjl
. meas.
2008 13 Million
6 Million |
-3 Million |
e 1 B (3] o M“nw T T () =2

Figure 43. Wave elevations along three longitudinal cuts obtained using SST &-@ model on threc
different mcshes: top - y/L = 0.082; middlc - y/L = 0.172; bottom — y/L =0.301

meas. - i e meas.
SST | SST

008 SST
RKE
HRW

I~ NN

TH

R o) o L

Figure 44. Wave clevations along three longitudinal cuts obtained using three different
turbulence modcls on the 6 million cell mesh : top - y/L = 0.082; middle - y/L = 0.172; bottom
-y/L=0.301

Figurc 45 shows the contours of axial velocity at x/L = 0.935 obtained using the three
turbulence models on the 6 million cell mesh. All three turbulence models capture the gross
feature of the boundary layer - the distorted vclocity contours rcflecting thickening of the stern
boundary layer due to convergence of wall-lmiting streamlines, and also the ensuing vortex
sheet, the degrce of which varies model to model. The prediction by Wilcox's k-@ model (the
bottom-right figurc) seems to be the closest to the measurement.

a)

ZJL,.,g
N

0.04

C) 0.0 58 0.0 y!L,.,OID? 0 d) 096 55 0.04 wL,',O 02 0
Figure 45. Contour of axial vclocity (U) at x/L = 0.935 obtained on 6 million cells. a) measured;
b) SST k-w ; e¢) realizable k-£; d) Wilcox’s k-w

Dynamic Sinkage and Trim

The dynamic sinkage and trim computations were carried out using ransFSDyMFOAM on a
1.5 million-cell hcxahedral mesh for three differcnt Reynolds numbers, Re = 5.96 x 10°, 1.19 x
107, 1.75 x 10" and the corresponding Froude numbers, Fn = 0.138, 0.28, 0.41, respectively.
Unsteady RANSE was solved along with the equations of 2-DOF (heave and piteh) ship motion.
The transient runs were continued until the resistance, the trim angle, and the sinkage reach
statistically steady states. Thc time-averaged resistance, trim, and sinkage are shown in Figure
46 along with the experimental data. Despite the relatively coarsc mesh used in this study, the
predictions arc in fair agreement with the measurements. More details on these calculations can
be found in Kim ct al.*'.

38

0.010 1.2

experiment experiment
NavyFOAM o 1.0 NavyFOAM o]
0.008
0.8
0 —
0.006 o
5 ﬁ 0.6
0.004 . o o E 0.4
0.2
0.002 00 _ o .
0.000 -0.2
0.0 0.1 0.2 03 0.4 0 0.1 0.2 03 0.4
a) Froude number b) Froude number
0)
=~ Q
@ 0.002
]
x
=
(7]
0.004 o
experiment
NavyFOAM o
0.006 '
0 0.1 0.2 0.3 04
c) Froude number

Figure 46. Prediction of a) resistance, b) trim and ¢) sinkage for the DTMB 5415 model

Joint High Speed Sealift (JHSS)

This section involves using NavyFOAM's multiphase, incompressible Reynolds
Averaged Navier-Stokes (RANS) solver for the Joint High Specd Sealift (JHSS) concept surface
ship. The JHSS coneept vessel is a challenging eomputational case bccause of its eomplex
geometry and free surface interactions with both the bow and waterjcts. The RANS equations are
solved using NavyFOAM'’s k-omega SST turbulence model. Only half the body is solved, as
symmetry is assumed, and the domain is non-dimensionalized by ship length. The coneept vessel
is sealed from full scale by constant Froude number to a model scale. The Froude number (£7r)
ranges from ~0.23-0.40. The air and watcr phases are accountcd for using NavyFOAM’'s implicit
Volume-of-Fluid (VOF) capability. The boundary eonditions used for these computations are:

e Defined fixed turbulent quantitics (k, omega, nuTilda) and veloeity (U), and calm
water volume fraction conditions (gamma) at inlet

¢ Defined pressure (p) at outlet

e Zero gradient for all quantities, and calm water volumc fraction conditions
(gamma) at far field boundaries

¢ nuTilda =0, k~ 0, and omega set to zero gradient at the walls

Side and stern views of the JHSS geometry ean be seen below in Figure 47. The left side
of Figure 47 shows the profile of the concept vessel including the gooseneck bow, which has

39

very little clearance from the free surface. The right side of the figure shows the waterjets from
the stern. Both the gooseneck bow and the waterjet inlets/nozzles are complex geometry fcatures
that require spccial care/treatment in the meshing process.

Figure 47. JHSS concept vessel geometry
Unpowered Bare Hull Computations

Initially, computations are done with the bare hull (no waterjets included in the model) to
test NavyFOAM’s multiphase sinkage and trim capability. Latcr in the report powered
computations involving the waterjets will be discussed. Figure 48 shows the structured surface
mesh on the bare hull used for these calculations. The surface mcsh on the JHSS displays mesh
refinement around the free surface to capture free surface disturbances. The meshes used for this
study were typically on the ordcr of 2-4M cells total.

Figure 48. JHSS structured surface mesh on the bare hull

The computational domain is split into many domains to allow the computations to be run
in parallel. The domain is split using the METIS domain decomposition method. Typical steady
state run times for this geometry are 48-72 hours depending on the number of domain partitions.
Steady state convergence is assumed when the forces (pressurc and viscous) on the body and
sinkage and trim values change by a negligible amount from one iteration to the next. Figure 49
shows wave profilc rcsults from NavyFOAM computations.

40

OF - A
OF - B

| m = exp
s Rel OF - A

Figure 49. JHSS wave profile on the hull for vartous NavyFOAM meshes and cxpcrimental
measurements, scaled up to full scale (full scale LBP ~950 ft)

Figure 49 shows results from a NavyFOAM gnd study, and experimental measurements
for a slightly different JHSS model. A grid resolution study and a blocking study resulted in 3
different meshes (OF-A, OF-B, and Ref OF-A). The gnd study showed that NavyFOAM gave
relatively consistent results for all three mcshes, thus the grid scheme shown in Figure 48 is used
for all results in this report. Figure 49 also shows that the NavyFOAM predicted wave profiles
match experimental measurements well. However, one can sce that the bow wave is slightly
under predictcd. This is most likely due to a lack of grid resolution in the bow arca and/or need
for a sharper volume fraction discretization scheme. Nevertheless the differences are relatively
small considering the ship length is 950 feet and the bow wave is under predicted by ~1 foot.

Figurc 50 shows some axial velocity boundary layer profiles upstrcam of where the
waterjet inlet would be located (inboard on the left and outboard on the right). NavyFOAM
results (OF) are compared to both experimental measurements (Exp) and previous double body
calculations with another RANS solver (TENASI). Thc NavyFOAM boundary layers match
experimental measurements very well. These boundary layer plots are important because
powering predictions ultimately depend on (amongst other things) accurate prediction of the
flowfield upstream of the waterjet inlets.

41

3)
2 2
3 3
w]
-] s
2 2
o =]
3 b
] o
] L]
E E
3 3
z z
U /v u’u

Figure 50. Inboard (left) and outboard (right) axial veloeity boundary layer plots for
NavyFOAM free surface computations (OF), TENASI double-body computations (TEN), and
experimental measurements (Exp)

Figure 51 shows sinkage and trim values over the course of a NavyFOAM run for three
Froudc number cases. Each plot shows a consistent pattern for both sinkage and trim for all run
times, thus showing that the multiphase solver is relatively robust, and wild swings in sinkage
and trim over the course of a run are not predicted.

20 ko JHOS Bare e 36w Swe MR Cove 4210 Rare 1R Cone
Srasgn —

e
0

Figure 51. Sinkage and trim run time values plotted for three different Froude numbers

Figure 52 shows frce surface plots for the bare hull eonfiguration under fixed (to the
design point) and free sinkage and trim cases. These plots show that the predicted wave profiles
for the free to sink and trim case are similar to the profiles predicted under fixed conditions.

Figure 52. Fixed and free sinkage and trim NavyFOAM free surfaee plots eolored by wave
elevation

42

Figure 53 shows total resistance predictions on the body over various Froudc numbers for
both NavyFOAM and experimental measurements. Onc can see that NavyFOAM predicts drag
on the body cxtrcmely well for all Froude numbers as compared to experiment. These successful
predictions are important because resistance prediction is a key to powcring predictions.

250
z | —8— ExpMess »
E?OO —--:NnSyFm 74
§ 150}
§ [
& 1001
-
S SOF |
4
1 1 1 1 J
92025 03 035 04 045
Froude Number

Figure 53. JHSS resistanee for various Froude numbecrs predicted by experiment and
NavyFOAM

Figure 54 shows sinkage (top) and tnim (bottom) comparisons to experimental
measurements for various Froude numbers. NavyFOAM sinkage predietions mateh experimental
measurements very well, with a slight diserepaney at the highest Froude numbcr. NavyFOAM
trim predictions also mateh experimental mcasurements well over the range of Froude numbers,
with a slight diserepaney at the two highest Froude numbers. Although the trim differences may
look large they only differ by fractions of a degree. In both the sinkage and trim eases the overall
trends are predicted correctly.

o -
E - —8— Exp Meas
g -0.01 ——a&—— NavyFoam
£ 002
c
7] 2
1 N | SR TS 1 f T - S W |
-0'0%2 025 03 035 04 04f
Froude Number
0.2L
iy ——8— Exp Mess
§ 0.1 ——@— NavyFoam
& i
g o o
£ o1t ~—
= —— P
0.2 ~
Y E— 03 035 04 o4
Frounde Number

Figure 54. JHSS barc hull sinkage (top) and trim (bottom) predictions for various Froude
numbers

43

Powered Computations with Waterjets

The rest of this section will discuss powered JHSS conditions. The powering model
deseribed below is for the JHSS concept vessel fixcd at design sinkage and trim. The waterjet
pumps are simulatcd by a body force model in NavyFOAM, which imposes a pressure jump over
a volume region as specified by the user. Figurc 55 shows the surface mesh on the watcrjet
region of the JHSS. The complcxity of the waterjet inlet geometry led to the desire to use
unstructured elements (tctrahcdral and prism) to grid around the waterjet inlets. NavyFOAM's
Generalized Gnd Interface (GGI) capability allows us to combine the structured mesh used for
the bare hull computations with an unstructured grid around the waterjet inlets. Figure 55 shows
the different structured and unstructured surfaces on the hull.

Figure 55. Surface mesh at the stern showing GGI region around waterjets

Powered computations are carried out similar to the process described above for the bare
hull case (domain decomposition, stcady state critcrion, etc.). One additional steady state
criterion 1s added for the powering case: the resistance on the body must match an artificial tow
forec (to match experimental tow tank rcsults) and the thrust in the watcerjets provided by the
body force modcl to simulate self propulsion. Figurc 56 shows axial velocity contours through an
inboard waterjct inlet. The right side of Figure 56 shows the volume mesh at this cross eut. One
can see that the flow remains smooth through the GGI interfaces, thus NavyFOAM's GGl
capability successfully handles these complex flow interfaces.

Figure 56. Axial velocity contours through the GGl modeled waterjct without (left) and with
(right) volume mesh overlayed

Figurc 57 shows axial velocity (¥x) contours predicted by NavyFOAM for the inboard
(right) and outboard (left) waterjets just upstream of where the waterjet pumps (or body force
model in NavyFOAM’s case) would reside. The qualitative look of the flowfield upstream of the
pump matches previously validated TENASI computations very well. It is important to
accurately ecapture the flow upstream from the pump as it is a key factor in final power (DHP)
predictions. NavyFOAM predicted self propulsion at a thrust of 163 N, while experimental tests
resulted in a self propulsion point of 153 N. There is a slight discrepancy bctween experiment

44

and NavyFOAM self propulsion points, but they are still quite close considering the different
methods (tow tank experiments vs. computations) used in obtaining the results.

Figure 57. Axial velocity contours insidc the waterjets

Figure 58 shows the free surface colored by wave height for the powered JHSS as
prcdicted by NavyFOAM. The wave pattern is similar to that found in the bare hull case except
in the stern region, as it should be. The rooster-tail at the stcrn is eaptured correctly, and the
affect of the flow exiting the waterjets can be seen.

Figure 58. Powered JHSS free surface plot colored by wave elevation

Figure 59 shows a photograph of the flow exiting the waterjets during tow tank tests
comparcd to NavyFOAM’s post-processed results. One ean see that the NavyFOAM
computations predict thc complex physies taking place at the stern very well. The interaction
between the rooster-tail shooting out from underneath the stern and the flow exiting the waterjets
is captured very well in NavyFOAM.

45

Cusanelli, Carpenter & Powers
NSWCCD-50-TR-2007/076

Figure 59. Experimental photograph (left) and NavyFOAM post-processed JHSS powered stern

In conclusion, NavyFOAM displays the capability to accurately predict complex physics
for surface ships. The JHSS concept vessel is an especially complex surface ship due to the
gooseneck bow and thc waterjet inlets/powering. Initially, the hull resistance, sinkage and trim of
the bare hull case are predicted with the hull free to sink and trim. Navy FOAM results match
cxperimental mcasurements very well for various Froude numbers that take the concept vessel
through diffcrent ship attitudes. Finally, self propulsion is predicted with a body force modecl (in
place of the actual waterjet pumps) providing thrust that balances out the model's resistance.
NavyFOAM powering predictions match experimental measurements wecll.

Summary

This report provides a guide to NavyFOAM V1.0, which is based on the OpenFOAM
open source software. A brief technical description of the code is given with an emphasis on
those changes made for NavyFOAM V1.0 that differentiates it from the standard OpenFOAM
offering. More details on OpenFOAM specifically can be found in the OpenFOAM guidces
rcferenced in this report. Complementing the technical description of NavyFOAM changes
there is a User’s Guide section to help users of NavyFOAM properly implement the use of these
improvements. Results are presentcd for a variety of Navy relevant configurations including a
fully submerged axisymmetric body, a tanker, DTMB Model 5415 (pre-contract design for the
DDG-51) and the Joint High Speed Sealift (JHSS) concept. Results for all cases compare will
with cxperimental data. Results are also presented for a variety of grid types and turbulence
models providing some indication of the capabilities available with the codc. Finally, several
tutorials as well as other information that is directly aimed at helping uscrs successfully use the
code are also provided.

46

Appendix A: Supplemental User’'s Guide

This seetion is meant to supplement the onginal OpenFOAM User’s Guide. For more
detailed information on the OpenFOAM ecode and settings consult the User's Guide:
http:/foam.soureeforge.net/doe/Guides-a4/UserGuide.pdf.

Standard solvers that are used:

e icoFoam (transient, laminar, incompressible, single phase)
¢ simpleFoam (steady, RANS, incompressible, single phase)
e interFoam (transient, RANS, incompressible, multi-phase)

Files Contained in the system Direectory inelude:
(1) eontrolDict
(2) deeomposeParDiet
(3) fvSehemes
(4) fvSolution

controlDict
Dietionary that controls run parameters and output data from the run.

Application: here you speeify the solver used (i.e. simpleFoam, ieoFoam, ete.). This is
not essential. Speeifying the executable here doesn't seem to have any eontrol over the run.

StartFrom: here you speeify when to start the run from. Options are:

firstTime — start from the earliest time directory available

startTime — start from the time speeified by startTime on the next line

latestTime — start from the most reeent time direetory available.
startTime: enter the time to start the run from when startFrom ? startTime, is selected.
StopAt: here you speeify when to stop the applieation. Options are:

endTime — stop run at time speeified by endTime on the next line

writeNow — stop the run at the next iteration and write out the last time step

noWriteNow — stop the run at the next iteration and don't write time info at last time
step
nextWnte — stop the run at the next scheduled write time speeified by writeControl

endTime: time when run will stop. Only valid when stopAt ? endtime; is seleeted

deltaT: here you speeify the run time step. This is typieally / for steady runs and for
unsteady runs this is superceded by maxCo, which is diseussed below.

WriteControl: here you speeify when/how to output information. Options are:
timeStep - writes data every writelnterval time steps

runTime — writes data every writelnterval seeonds of run tine

47

o

adjustableRunTime — this is the same as runTime, exeept it will adjust the time steps to
coincide with the writelnterval

cpuTime — writes data every writeInterval seconds of CPU time
clockTime — writes data every writelnterval seconds of real time
writeInterval: scalar data that specifies time output from writeControl

purgeWrite: this is an integer value that specifies how many output time directories arc
stored. When the max number of purgeWrite directories have been written, the newest time data
will over write the oldcst time direetory. A value of 0 means that no time data will be
overwritten.

WriteFormat: here you specify the format of the output data. Options arc:
ascii — ASCII data with the amount of signifieant figures specified by writePrecision
binary — Binary data
ascii is typically used

writePrecision: number of significant figures ASCII writeFormat 1s written out to.

WriteCompression: here you specify the eompression (if any) of the output files. Options
are:

uncompressed — No data eompression
compressed — gzip compression
eompressed has typically been used

timeFormat: here you speeify the format for the time direetory names. Options are:
fixed — all time directories are written in fixed format (i.e. 123.456)
seientifie — all time direetories are labeled in seientifie format (i.e. 1.23456e+03)
general — speeifies seientifie format of exponent is less than -4, otherwise fixed
general has typically been used

timePrecision: here you specify the number of significant figures for timeFormat time
direetory labels. 6 is the default and is typically used.

GraphFormat: here you spceify the graph data written by an applieation. Options arc:
raw — data in ASCII format in eolumns
gnuplot — data in gnuplot format
xmgr — data in Grace/xmgr format
Jjplot — data 1n jPlot format
typicall raw is speeified, but this depends on the user preferenee.

RunTimeModifiable: here you specify yes to have the directories (ineluding controlDict)
read at the beginning of each time step, or no to have the run proceed without rereading
dircctories. This is typically set to yes, and should remain so to avoid eonfusion.

48

AdjustTimeStep: seleet yes for an adjustable time step (whose size is determined by
maxCo and maxDeltaT), or no for a constant time step as specified by deitaT.

MaxCo: This adjusts the time step to achieve the speeified maximum CFL number. This
value is typieally low O(1) at the beginning of a run, and ramped up O(/0) onece the solution
becomes more stable.

MaxDeltaT: this value is a limit to the maximum time step achievable, when a maxCo is
speeified.

** At the bottom of the controlDict (or anywhere within) you ean speeify additional
libraries or functions to be loaded at run-time. Turbulence model and dynamic mesh motion /ibs,
and foree functions are common examples of what have been used.

decomposeParDict

Dictionary that contains all input information on domain decomposition for parallel
proeessing runs.

Subdietionary: numberOfDomains

Here you specify the number of partitions you want your grid to get split up into.
Subdictionary: method

Here you specify the method of domain decomposition. Options are:

simple — domain is decomposed into volumes that arc similar in all coordinate
directions.

hierarchical - user ean specify the order of direction for simple deeomposition.
scotch — attempts to minimize the number of geometric boundaries.

metis — similar to scotch, but is not free for commereial use, it will eventually be
discontinued.

manual — user manually specifies decomposition of each cell to a proeessor.

metis has traditionally been used during testing, occasionally simple decomposition is
used. User should use metis exeept for special eircumstances.

Subdictionary: simpleCoeffs

Here you speeify n number of proeessors in each direction to decompose domain, and
cell skew factor (delta) for decomposition. This is only neeessary for simple domain
deeomposition.

Subdictionary: hierarchicalCoeffs

Here you specify n number of proeessors in each direction to deeompose domain, and
cell skew factor (delta), and the order of directions (i.e. xyz or zyx) for decomposition. This is
only necessary for hierarchical domain decomposition.

Subditionary: scotchCoeffs

Here you specify the weighting factors (processorWeights) for each individual processor.
The numbers for cach proeessor are normalized, so any values can be aecepted, no matter the

49

sum. You can also specify the strategy, but it is not clear what this value means. This is only
necessary for scotch domain decomposition.

Subdictionary: metisCoeffs

Here you specify processorWeights, as described above in scotchCoeffs. This is only
necessary if you specify mctis decomposition.

Subdictionary: manualCoeffs

Hcre you specify the name of a data file that contains processor allocations for each cell.
This is only necessary if you specify manual decomposition.

Subdictionary: distributed

This is an optional subdictionary, where you state yes or no, whether there is geometry
data in any other directories that needs to be decomposed with the current directory.

Subdictionary: roots

If you chosc yes to distributed, here you list the address(cs) to additional directories.

fvSchemes

Dictionary that contains numerical scheme input: interpolation methods, temporal and
spatial discretization information

Subditctionary: ddtSchemes

This subdictionary contains first time derivative discretization method
Euler (1 order implicit) is the only method that has been consistently uscd
Subdictionary: gradSchemes

This subdictionary contains discrctization information for the gradient terms

Gauss linear and leastSquares. The Gauss linear method has been used most frequently,
yielding consistent results. The leastSquares method is believed to be more accurate when
calculating the gradient on non-uniform meshes, but bugs were encountered early in the V & V
process. Improvement of the leastSquares gradient method has been an ongoing effort.

Limiting is available (i.e. Gauss linear limited); however, this was proven to negatively
affect the solution during the V & V process.

Subdictionary: divSchemes
This subdictionary contains discrctization information on the divergence terms.

Div(phi,U) is commonly refered to as the convection term in thc momentum cquation.
Typically, a 2™ order upwind is used for this term,Gauss lincarUpwind cellLimited Gauss linear
1.

Turbulent quantitics (nuTilda, k, omcga, epsilon, etc.) are usually solved 1* order upwind
(Gauss upwind), but it may be necessary to solve the 2" order upwind (Gauss linearUpwind
cellLimited Gauss linear 1.0).

Multiphase gamma terms...

50

*Note: There will be an error message if the term div((nuEff*dev(grad(U).T()))) is left
out, or if a divScheme is applied to this term. Instead this term needs to be included with a
gradient scheme diseretization. Gauss linear 1s the most common schemc used with this term.

Subdictionary: laplacianSchemes
This subdictionary contains discretization information for the laplacian terms.

Gauss linear corrected has been the standard scheme used. Limiting ean be used (Gauss
linear limited 0.0 = uncorrectcd and Gauss linear limited 1.0 = eorreeted). The eorreetion refers
to treatment of non-orthogonal terms. An uncorrected solution (Gauss linear limited X.X with
X.X < 1 will not eonverge to the same, more aceurate, solution as Gauss linear corrected).

Subdictionary: interpolationSchemes

This subdietionary eontains information on interpolation that is usually from cell center
to cell face.

Linear has been the standard scheme used; however, reconCentral seheme 1s bcing
developed and is believed to be more accurate for meshes with signifieant non-orthogonality
(unstructured meshes).

Subdictionary: snGradSehemes

This subdietionary contains information on surface normal gradient terms. This term
specifies the portion of the gradient at a cell’s face that is normal to the faee.

corrected has been the standard scheme used for this subdictionary and other schcmes
have not been used significantly.

Subdietionary: fluxRequired

This subdictionary contains information for variables whose flux is calculated in the
applieation.

The flux is required for pressure (p and pd) for most ecalculations, because a pressure
equation is solved. Thus the default is usually set to no and the variablc p or pd is speeified in
the subdietionary, so that the flux is ealeulated for the pressure.
fvSolution

Dictionary that eontains algorithm and linear system solvers information, such as solver
settings and toleranees for convergenee. The scgregated solver variables and solution algorithms
will vary with choice of problem solver executable (i.e. simpleFoam and interFoam require
different settings).

solvers contains the linear systcm of cquation algorithms and tolerances for all the
variables (OpenFoam uses a segregated solver).

The common linear solvers tested and used are conjugate gradient solvers (PCG/PBiCG)
and multi-grid solvers (GAMG/AAMG).

Many tolerance settings have been used, but eommon values tested have been:
P — tolerance le-10; relTol 0.01; and minlter = 1;

U, gamma, and turbulent quantities - toleranee 1e-07; rclTol 0.0; and minlter = 1;

51

The tolerance eriterion is satisfied when the residual for the linear solver reaches the
prescribed value. The rclTol criterion is satisfied when the linear solver residual has dropped by
the order of magnitudc specified by: 1.0/relTol (i.e. relTol = 0.01 corrcsponds to the residual
dropping two orders of magnitude or 10%).

Note: be sure to use the minlter=1; command for all the linear solvers, as some solution
tolerances may bc sct such that vaniables will stop iterating prematurely in the solution process,
thus leading to inaccurate solutions that may look OK.

Pressure algorithms (SIMPLE and PISO) -

For simpleFoam (steady state, single phase, RANS solver) the solver vaniables needed are
p, U, turbulent quantities (nuTilda for SA, k and omega for SST or WKO, k and epsilon for k-
epsilon, etc.).

The pressure algorithm should be SIMPLE, which includes:

nNonOrthogonalCorrectors #; Where the # selected will determine the number of
additional pressure solver loops. For example, for a value of # = 1, the solver will iterate over the
pressure equation twice. For runs with meshes of good quality these additional loops are not
nceded. However, for meshes containing a lot of skew or nonOrthogonality, values between 1
and 3 will add stability (as well as additional computational time) to the solution.

nCorrectors?

pRefCell and pRefValue must both be set or errors will oecur. These values represent
what the rcfercnce pressure value (most likely frec-strcam) and a cell number where this value
occurs (a ccll located in the frec stream). All previous runs have used values of (0 for both
without problem.

For unsteady and pseudo time-marching steady solvers like interFoam and
ransNavyInterFoam

The pressure algorithm should be PISO, whiech ineludes:
nNonOrthogonalCorrectors #; ...

relaxationFactors contains the under-relaxation values for all the linear solver vanables
(U,p,pd,omega,k,gamma, etc.). The relaxation factors correspond to :

0.0= Fully relaxed
0.0 < # < 1.0 = variable under-relaxation
1.0 = No relaxation

For all implieit and most ¢xplicit runs, under-relaxation should be used on all varables to
varying degrces. The pressure terms (p for simpleFoam, pd for other solvers) require more
undcr-relaxation than other variables and this valuc is usually very important to solution stability.
It is not uncommon to start a calculation out with a value of 0.1 or 0.2 and wait for the initial
solution to develop and then ramp the value up progressively to 0.3. The veloeity (U) usually
starts around 0.5 and ramps up to 0.7 or 0.8 as the solution stabilizes. The turbulent quantities
and gamma usually affect the solution startup less and typical values are 0.6 and 0.7-0.8
respectively.

32

[

Appendix B: Utility Programs

Sevcral programs have been written to simplify post-processing NavyFOAM output data.
Descriptions of thcir use arc given here.

dataFunkyFieldComparison

Description

This utility rcads the scalar and vcctor volume field from FOAM numcrical solution
data filcs and compares them with the analytic solutions specified by a dictionary filc named
funkyFieldsDict stored under directory $CASE_DIR/system. The utility will first match the ficld
names specified in funkyFieldsDict with those stored in the solution files and then calculate the L,

and L, norm of the error and send the rcport to standard output (stdout). The error will only be
calculated if the ficld name is found in both funkyFieldsDict and solution files.

This utility is part of NavyFOAM.
Usage

The command line usage looks like
dataFunkyFieldComparison [-case dir] [-time time] [-latestTime]

The optional options arc
-casc dir: specifics the case dircctory;
-time time: selects the time step;
-latestTime: selccts the latcst time step.

Without any option, the utility will read thc data files for all time steps stored under the
current casc directory.

Installation

1) Crcate a working copy using svn chcckout. The rccommended local directory to

chcckout the package is
NavyFOAM/applications/utilities/postProcessing

svn checkout svn+ssh:/blackwater/5700/NavyFOAM/IniegrationBranches/NavyFOAM-1.5-dev-
rev995/NavyFOAM/applications/utilities/postProcessing/dataComparison
2) Go to directory ./dataComparison/dataFunkyFieldComparison and compilc the package:

wmake

Thc compiler may gencrate some wamir;g message which can bc ignored in this casc.
The gencerated exccutable file dataFunkyFieldComparison can be found in a uscr application binary
file dircctory specitied by $FOAM_USER_APPBIN.

Warning: To compilc this utility at least version 2.1 of Bison has to be installed. Check with

58

bison -V

on the command line before trying to compile it. Go to http:/www.gnu.org/softwarc/bison’/ for
more information regarding Bison.

Expression Syntax

The example below shows somc uscful cxpression syntax. The most complete
documentation of thc expression syntax is thc source filc for the Bison-grammar in the package:
ValueExpressionParser. yy
ValueExpressionLexer.ll

Example

The dictionary file funkyFileldsDict used in a Taylor vortcx test casc is shown below:

FoamFile

{
version 2.0;
format ascii;
class dictionary;
object funkyFieldsDict;

t
§

//*************************************//

expressions

TaylorVortex Velocity

{
field U;

expression "vector(sin(pos().x)*cos(pos().y). -cos(pos().x)*sin(pos().y), 0)*exp(-0.2*time())":
¥

)
TaylorVortexPressure

{
field p;

expression "0.25%(cos(2.*pos().x)} +cos(2. *pos().y)y *pow(exp(-0.2*time()).2)":

]
'

):

The above dictionary file specifies the analytic solution of the Taylor-Green vortex
problcm:

plani] = %(cost +cos2y)F (1)

u(x,y,t)=sinx cos y F(t)
v(x,y,t) =—cosxsinyF(t)
with F(t)=¢™ and v =0.1.

Suppose we already have the solution files at ime = | as the latest time step stored
under $CASE_DIR/1. The command linc

dataFunkyFieldComparison —latestTime

54

will yield the output shown below:

HHHHHHBH S R R HEHHE R R BB
Time =1
HHHHR B R T T R TR H R R R

volScalarField: p

max error occurs at cell: 0
maxErr = 0.000409110343
rmsErr = 0.00013791631093 1

volVectorField: U

max error in magnitude occurs at ccll: 12216
maxErr = 6.79861100733¢-05
rmsErr = 2.44996079401e-05

max error in X-component occurs at cell: 7680
maxErr = 3.4175343¢-05
rmsErr = 1.44738699513¢-05

max error in Y-component occurs at cell: 12217
maxErr = 6.7017086¢-05
rmsErr = 2.1343033345¢-05

max error in Z-component occurs at cell: 5911
maxErr =0
rmsErr =0

For a scalar volume field such as the pressure field, the maximum error (maxErr) and

root-mean-squares error (rmsErr) are calculated as follows:

maxErr =L_(p" - pg) = o (L = 2asb
1SNp

L3y
rmsErr = L,(p" - pi) = —Z(P,"—I’SJ)‘
VN, 5

where the subscript ““0” dcnotes the analytic solution, the superscript “n” represents the n-
th time step, and N, is the total number of cells for cell-centered finite volume mcthod.

For a vector volume field such as thc velocity field, the maxErr and rmsErr are calculated

for the vector magnitude:
maxErr=L_(|V|" - |V, |") = max (|| vr-v,I

<isSNp

)

Ny 4
mmsErr = L,(|V|" |V, |")=\/NLZ(| A |")
P =l

b

and for cach component:
x-component

maxErr = L, (u" —ug) = max (Ju —ug, |)
1Si SNp»

| Ny
msEmr=L,(u" —ug) = J— (] —ug,)?
Np i=1
y-component

maxErr =L _(v' —vj) = .?}?/)v(,»(lv’" ~vo)

Np
msErr = L,(v" —v[) = \/I—Z(V." -v;,)?
Np i=l

z-component

waaREEy= L (W'~ 5= At (v —wgg)

P =l

l N,
rmsErr = L,(w" - w)) = \/N_ Z(W." -wp,)

An optional option —patches will be added to calculate thc L, and L, norm of the error in

patch-internal-field (cells that directly connccting the patch) for specified patches.

NavyFOAMToTecplot

Description

This utility reads the scalar and vector volume and boundary patch fields from FOAM

numerical solution data files and converts them to Tccplot data files.

Usage

‘(hull)’

This utility is part of NavyFOAM.

The command line usage looks like

NavyFoamToTecplot [-region name] [-case dir] [-fields fieldsList]
[-patches patchesList] [-time time] [-latestTime]

The optional options are

-region name: specifies the region namc;

-case dir: specifies the casc directory;

-fields ficldsList: specifies a list of fields to output, e.g. ‘(p U gamma)’, or *(U)":
-patchcs patchesList: specifics a list of patches to output, c.g. ‘(inlet outlet wall)’, or

1)

-timc time: selects the time step;
-latestTime: selects the latest time step.
Without any option, the utility will rcad the data files for all time steps stored under

the current case directory and convert the volume field to Tecplot data.

56

Installation

1) Create a working copy using svn checkout. The rccommended local directory to
checkout the package is
NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev-
rev1745/NavyFOAM/applications/utilities/postProcessing/dataConversion
/NavyFoamToTecplot

2) Go to directory ./dataConversion/NavyFoamToTecplot and compile the packagc:

wmake
The gencrated exccutable file NavyFoamToTecplot can be found in a user application
binary file directory specified by $FOAM_USER_APPBIN.
Output

The output filcs can be found in $CASE_DIR/TecplotData, for cxample
NavyFoamToTecplot -fields ‘(p U)" -patches ‘(hull)’ -time 10

will generate 10.dat and huli_10.dat in $CASE_DIR/TecplotData.

NavyCellSetToTecplot

Description

This utility reads a user specified cellSet file in ./constant/polymesh/sets/ and convert
1t to Tecplot data file.
This utility is part of NavyFOAM.
Usage

The command linc usage looks like

NavyCellSetToTecplot <cellSetFileName> [-region name] [-case dir]
[-patches patchesList]

The mandatory argument 1s
cellSetFileNamc: specifies the file name for the cellSet, c.g. waveDampingCeclls;

The optional options are
-rcgion name: spcecifics the region namc;

-case dir: specifies the case directory;

Sill

-patchcs patchesList: specifics a list of patches to output, c.g. ‘(inlct outlet wall), or
‘(hull)’;

Installation
1) Creatc a working copy using svn checkout. The recommendcd local directory to

checkout thc package is
NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev-
rev1745/NavyFOAM/applications/utilities/postProcessing/dataConversion
/NavyCellSetToTecplot

2) Go to directory ./dataConversion/NavyCellSetToTecplot and compile the packagc:

wmake

The gencratcd cxecutable file NavyCellSetToTecplot can be found in a uscr
application binary file directory specificd by $FOAM_USER_APPBIN.

Output

The output files can be found in $CASE_DIR/TecplotData, for cxamplc
NavyCellSetToTecplot waveDampingCells -patches ‘(hull symmetry)’

may generate waveDampingCells.dat in $CASE_DIR/TecplotData. The Tecplot data file
waveDampingCells.dat should contain the following zones:

ZONE T = volMesh
ZONE T = hull
ZONE T = symmetry
ZONE T = waveDampingCells
The first zonc i1s thc volume mesh. The next two zonces are the surface mesh for the

uscr specified patches. The last zone i1s a volume mcsh for the cellSet. In Tecplot, the mcsh
of each zonc can be plotted in diffcrent colors.

NavyFaceSetToTecplot
Description

This utility reads a user specificd faceSet file in ./constant/polymesh/scts/ and converts it
to Tecplot data filc.

This utility is part of NavyFOAM.
Usage
Thc command line usage looks like

58

NavyFaceSetToTecplot <faceSetFileName> [-rcgion name] [-case dir]
[-patches patchesList]

The mandatory argument is
faccSetFilcName: spccifies the file namc for the faceSet, c.g. skewFaces;

Thce optional options arc
-region name: specifies the region name;
-casc dir: specifies the case directory;

-patches patchesList: specifics a list of patches to output, e.g. *(inlct outlet wall)’, or
‘(hully’;

Installation

1) Create a working copy using svn checkout. The recommcnded local directory to
checkout the package is
NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev-
rev1745/NavyFOAM/applications/utilities/postProcessing/dataConversion
/NavyFaceSetToTecplot
2) Go to directory ./dataConversion/NavyFaceSetToTecplot and compile the package:

wmake

The generated executable file NavyFaceSetToTecplot can be found in a user
application binary file directory specificd by $FOAM_USER_APPBIN.

Output

The output files can be found in $CASE_DIR/TecplotData, for cxample
NavyFaceSetToTecplot skewFaces -patchces ‘(hull symmetry)’

may gencratc SkewFaces.dat in $CASE_DIR/TecplotData. The Tecplot data file
skewFaces.dat should contain the following zones:

ZONE T = volMesh
ZONE T = hull
ZONE T = symmetry
ZONE T = skewFaces
The first zone is the volume mesh. The next two zones are the surface mcsh for the

user specificd patches. The last zone is a surface mesh for the faceSet. In Tecplot, thc mcsh
of cach zone can be plotted in different colors.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

Appendix C: icoFoam Lid Driven Cavity Tutorial

This tutorial involves using the laminar, transient, incompressible solver for a 2-D
cavity. The cavity consists of 4 walls, where the top wall is moving, and thc othcr walls arc
stationary. First, we will go over pre-processing and case sctup, then we will run the test case,
and finally we will look at some post-processed results.

For more dctailed information on the OpenFOAM code and settings consult the User’s
Guide: http://foam.sourccforge.nct/doc/Guides-a4/UscrGuide.pdf.

Pre-Processing and Case Setup

Upon looking in the case directory (screen capturc below) you will notice that there are
directories labelcd system and 0, and a filc named transportProperties. Therc is also a file
labeled 2D_cavity allCoarseStr.cas, which is a mesh cxported from Gridgen in Fluent ASCII
double precision format. We will discuss the existing files and directories later, but now we need
to import the fluent .cas filc into OpenFoam. This will bc done using thc command
SfluentMeshToFoam.

[kdelaney®Retech allCoarseStruct]$ 1
total 1.2M
-rwW-rw-r-- 1 kdelaney kdelaney 1.2M Feb 1

9 12:31 2D_cavity_allCoarseStr.cas
drwxrwxr-x 2 kdelaney kdelaney 4.0K Mar 9

1

1

2

6:53 system
-TW-T----- 1 kdelaney kdelaney 886 Apr 8
drwxr-xr-x 2 kdelaney kdelaney 4.0K Apr 8

:35 transportProperties
:350

Mesh Input

Now enter the fluentMeshToFoam command as seen below and view the output from
the screen dump. The extra “| tee conversionLog” is not essential and is only included to record

61

the screen dump in a file named conversionLog. Your output should be thc same as the screen
captures.

Therc is a lot of information on the screen dump, most of which is self explanatory. Thc
most important part to notice is the last two lines of text in the screen dump which tell you that
the mesh information has been written into a directory named polyMesh inside a newly created
directory named constant. Finally the command ends successfully with the “End.” statemcnt.

[kdelaney@Retech allCoarseStructl$ fluentMeshToFoam 2D_cavity_allCoarseStr.cas | tee conversionlog

= -\
= | |

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

e X\ / 0 peration | Version: 1.5-dev |

| LY Y 4 A nd | Web: http://www.OpenFOAM,org |

| \\/ M anipulation |)

\ﬁ '/

Exec : fluentMeshToFoam 2D_cavity_allCoarseStr.cas

Date : Mar 09 2010

Tine : 16:40:45

Host : Retech

P1D : 5119

Case : /home/kdelaney/NavyFoam_runs/run/flat_plate/movingWallCavity/allCoarseStruct

nProcs : 1

// - - - - - L] 2 - - » * L] * - » * » - * - * * * L 2 » - * - - L] > - L] » - » //

Create time

Reading header: “exported from Gridgen 15.14R1"
Dimension of grid: 3

Number of points: 9522

nunber of faces: 18632

Number of cells: 4624

Reading points

Other readCellGroupData: 2 1 1210 1 4
Reading uniform cells

Read zonel:2 name:fluid patchTypelD:fluid
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

.Reading uniform faces

Read zonel:3 name:interior-3 patchTypelD:interior
Reading zone data

Embedded blocks in comment or unknown: (
Found end of section in unknown:)

.Reading uniform faces

Read zonel:4 name:lnlet-4 patchTypelD:wall
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

,Reading uniform faces

Read zonel:S name:Top-5 patchTypelD:wall
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

.Reading uniform faces

Read zonel:6 name:side_1-6 patchTypelD:wall
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

.Reading uniform faces

Read zonel:7 name:Outlet-7 patchTypelD:wall
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

,Reading uniform faces

Read zonel:8 name:Bottom-8 patchTypeID:wall
Reading zone data

Enbedded blocks in comment or unknown: (
Found end of section in unknown:)

.Reading uniform faces

(screen output continues on the next page...)

63

Read zonel:9 name:side_2-9 patchTypelD:wall
Reading zone data

FINISHED LEXING

dimension of grid: 3

Creating shapes for 3-D cells

Building patch-less mesh...--> FOAM Warning :
From function polyMesh::polyMesh(... construct from shapes...)
in file meshes/polyMesh/polyMeshFromShapeMesh.C at line 581
Found 9520 undefined faces in mesh; adding to default patch.

done .

Building boundary and internal patches.

Creating patch O for zone: 3 start: 1 end: 9112 type: interior name: interior-3
Creating patch 1 for zone: 4 start: 9113 end: 9180 type: wall name: Inlet-4
Creating patch 2 for zone: start: 9181 end: 9248 type: wall name: Top-S
Creating patch 3 for zone: start: 9249 end: 13872 type: wall name: side_1-6
Creating patch 4 for zone: start: 13873 end: 13940 type: wall name: Outlet-7
Creating patch S for zone: start: 13941 end: 14008 type: wall name: Bottom-8
Creating patch 6 for zone: start: 14009 end: 18632 type: wall name: side_2-9
Patch interior-3 is internal to the mesh and is not being added to the boundary.
Adding new patch Inlet-4 of type wall as patch O

Adding new patch Top-5 of type wall as patch 1

Adding new patch side_1-6 of type wall as patch 2

Adding new patch Outlet-7 of type wall as patch 3

Adding new patch Bottom-8 of type wall as patch 4

Adding new patch side_2-9 of type wall as patch §

DXX~NON

Default patch type set to empty

Writing mesh... to "constant/polyMesh” done.

End

constant/ directory and the createPatch Command

All of the mcsh gecometry details are stored in the constant/polyMesh directory. The
boundary file is typically the only one in polyMcsh dircctory that gets edited.

Now opcn up your constant/polyMesh/boundary file, which contains all of the
information for surfaces that were imported from your mesh. It should look like the screen
capture seen below.

The information at the top of the file (under thc FoamFilc header) gives a description of
the file (version, format, class, etc.) and is most likcly only useful to more expcricnced users, but
at the very Icast it is always useful as a label to Ict you know where you are. Furthcr down the
file you can sce that 6 surfaccs (Inlet-4, Top-5, etc.) werc imported with thec same boundary
namcs that were crcated in Gridgen. Each surface is described by the type of OpenFoam surfacc,
nFaccs and startFace. Only the type i1s of concern to the user at this stage and that will be
discusscd in morc detail later on.

64

// BT RE RE e T aa aead

65

e

.___’\

Sl

|
| N / F ield | OpenFOAM: The Open Source CFD Toolbox
| \\ / 0 peration | Version: 1.5-~dev
| NN i A nd | Web: http://www.0OpenFOAM.org
| \\/ M anipulation
\ R o T ey s e i T T T P T e T T T T e e Ay ey 3 s et st g 1 4 /
FoanFile
{
version 2.0;
format ascii;
class polyBoundaryMesh;
location "constant/polyMesh”;
object boundary;
}
// L *r * % * - * L ® * * * * * * & * * * * * * * £ » * * * * * o
6
(
Inlet-4
{
type wall;
nFaces 68;
startFace 9112;
}
Top-5S
{
type wall;
nFaces 68;
startFace 9180;
}
side_1-6
{
type wall;
nFaces 4624;
startFace 9248;
}
Outlet-7
{
type wall;
nFaces 68;
startFace 13872;
}
Bottom-8
{
type vall;
nFaces 68;
startFace 13940;
}
side_2-9
{
type wall;
nFaces 4624
startFace 14008;
}
)

//

Often times the boundary file necds to be altered from what is originally ereated during
thc import process. For this ease we necd to edit the fype of surface for some surfaces, and we
would like to group certain surfaces together to avoid redundancy and make life easier.

First we will group some of the surfaces together for case of book-keeping. To group
surfaces together, wc use the createPatch command. For now let’s say that we want to create a
group of surfaces for what will be: the moving Lid (movingWall), the stationary walls
(fixedWalls), and thc 2-D surfaces on the front and back (frentAndBack). The filc that allows us
to group surfaces is called createPatchDict and 1t is located in the system directory.

If you open your system/createPatchDict file you will notice that it needs to be edited.
Again, therc is detailed information about this dictionary file underneath the Foam File header,
and ean be used as a reference to thc user. Underneath the FoamFile section are the
matchToTolerance and pointSync commands which are not important right now and should be
left as is. Next, you will see a patches section, which is wherc we will do our editing to join
surfaces under onc boundary name and type.

The user should edit their createPatchDict file patches() scction to look like the screen
capturc on the ncxt page. The first patch is essentially renaming the Top-5 boundary to
movingWall, while leaving the type as wall. This is equivalent to simply changing the name in
the original constant/polyMesh/boundary file, but was done here for educational purposes. The
second patch will group the Inlet-4, Bottom-8, and Outlet-7 surfaces into one boundary named
SixedWalls, and this new boundary will remain a type wall. Lastly, the side_I-6 and side_2-9
surfaces will be combincd to frontAndBack and this new boundary will be of type empty. The
empty patch type is required for ALL 2-D surfaces.

Now we are ready to combine the surfaces, but first it is generally a good idea to copy
our constant directory before wc combine our surfaces, so thecre is always a reference. So for
Linux users, simply:

>> ¢p -1 constant orig_constant

to copy our reference constant folder to orig_constant. Then in the case directory enter
“createPatch” in the command line. The resulting sereen dump should look like the following
screen capturc.

66

D L e e e e e e e B B GO EE S S S S
| sEz=xsws= |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
I A\\ / 0 peration | Version: 1.0
| N A nd | Web: http: //www.openfoam.org
| NN M anipulation |
e e e e e e
|[FoanFile
{
version 2.0:
format ascii;
root */home/penfold/mattijs/foan/mattijs2.1/run/icoFoan”;
case “"cavity”,
instance "system";
local il
class dictionary;
‘ object createPatcheDict;
}
//“Q"‘:"S.f'ﬂ“..(l‘\‘".‘f'“"’."‘l.l"‘ﬁﬁ"'..’:r..
// Tolerance used in matching faces. Absolute tolerance is span of
// face times this factor.
matchTolerance 1E-3;

[// Do a synchronisation of coupled points.
[pointSync true;

|// Patches to create.
!// If no patches does a coupled point and face synchronisation anyway.

lpatches
i«
(
name movingWall;
type wall;
constructFrom patches;
patches (Top-5);
)
(
name fixedWalls;
type wall;
constructFrom patches;
patches (Inlet-4 Bottom-8 Outlet-7):
)
(
name frontAndBack;
type empty;
constructFrom patches;
patches (side_1-6 side_2-9);
)
i

67

o TR
Create ti

Reading ¢

Using rel

Moving fa

Moving fa
Moving fa
Moving fa

Removing

Removing
Removing
Removing
Removing
Removing
Removing
Renoving

End

Create polyMesh for time

[kdelaney@Retech allCoarseStruct]$ cp -r constant/ orig_constant
[kdelaney@Retech allCoarseStruct]$

[kdelaney@Retech allCoarseStruct]$

[kdelaney@Retech allCoarseStruct]$

[kdelaney@Retech allCoarseStruct]$

[kdelaney@Retech allCoarseStruct]$ createPatch

s

__ \
== I |
/ F ield | OpenFOAM: The Open Source CFD Toolbox |
/ 0 peration | Version: 1.5-dev |
A nd | Web: http://www.0OpenFOAM.org |
M anipulation | |
__ A4
createPatch
: Mar 09 2010
: 16:53:16
. Retech
5158
: /home/kdelaney/NavyFoam_runs/run/flat_plate/movingWallCavity/allCoarseStruct
* - * & # * * & - * * * r » &« 4 * *® * - * »* - * * - * * * > * //
ne
reatePatchDict.

ative tolerance 0.001 to match up faces and points

0

Adding new patch movingWall of type wall as patch 6
Adding new patch fixedWalls of type wall as patch 7
Adding new patch frontAndBack of type empty as patch 8

ces from patch Top-5 to patch 6

Moving faces from patch Inlet-4 to patch 7

ces from patch Bottom-8 to patch 7
ces from patch Outlet-7 to patch 7
ces from patch side_1-6 to patch 8

Moving faces from patch side_2-9 to patch 8
Doing topology modification to order faces.

Synchronising points.
Points changed by average:0 max:0

patches with no faces in them.

empty patch Inlet-4 at position O
enpty patch Top-5 at position 1
empty patch side_1-6 at position
enpty patch Outlet-7 at position
enpty patch Bottom-8 at position
enpty patch side_2-9 at position
patches.

Ve WON

Writing repatched mesh to 0,005

68

You will notice that the seeond to last line states “Writing repatched mesh to 0.005”. The
createPatch command will write the new patched surface information into a direetory whose
name is the first time step output of your future run, which in this case is a 0.0035.

So now you need to get rid of the old constant directory and move the new 0.005
directory to constant. In Linux this would be accomplished by:

>> mv constant orig_constant
>>mv 0.005 constant

Now the fransportProperties file needs to be placed in the constant dircctory. The
transportProperties file must ALWAYS be present in the constant directory. In Linux this
would be accomplished by:

>> mv transportProperties constant/

Now if you open the constant/polyMesh/boundary file it should have the eorreet number
of patches, names, and types. Your new boundary file should look like the sereen capture on the
next page.

69

I \\ / F ield
0 peration

| OpenFOAM: The Open Source CFD Toolbox
| Version: 1.5-dev

(I N 7/ A nd | Revision: exported
I| \\/ M anipulation | Web: http://www.OpenFOAM.org
e e D T I I
|FoamFile
{
version 2.0;
format ascii;
class polyBoundaryMesh;
location "polyMesh";
I object boundary;
}
:// * e % h * Kk Kk Kk E x * * 4 e % * & k R ok * * * Kk Kk R * /
[
3
¢
| movinghall
{
type wall;
nFaces 68;
startFace 9112;
}
fixedWalls
{
type wall;
nFaces 204;
startFace 9180;
}
frontAndBack
{
type enpty;
nFaces 0248;
startFace 9384;
}
b
i// LR R e R R R A s R R e e g e e e e de e //

Now we have the geometry imported and named as we want for the run. A good next step
is to export the geometry into a visual package (EnSight, ParaView, ete.) and make sure that all
surfaces are grouped and labeled ecorreetly. To export the geometry, use foamToEnsight for
EnSight, foamToVTK for ParaView, and no additional command is needed for ParaFoam. So
now take a minutc or two and inspcct your gcometry in your package of choice. Your gcometry
should look like the below figure, with the appropriate surface labcls.

70

Cavity geometry as seen in EnSight

Material Properties

The next step is to set up the matenial properties for the fluid. For the icoFoam solver,
only the kinematic viscosity is required in the constant/transportProperties dictionary file. Open
the transportProperties file, it should look like the sereen capture below. No editing is
necessary, just note that kinematie viseosity is always set in transportProperties.

E -------------------------------- - C44 - \
I ‘EF====2== |
AN / F ield | OpenFOAM: The Open Source CFD Toolbox
1 \\ 4 0 peration | Version: 1.5
| N 7 A nd | Web: http://www.0OpenFOAM.org
| \\/ M anipulation |
\\ --- /
FoamFile
{
version 2505
format ascii;
class dictionary;
object transportProperties;
}
//
nu nu [02-10000] 0.01;
// : i Rt i /

71

The kinematic viscosity, nu, is entered in as:

nu nu [02-1000]0.01;

where [0 2 -1 0 0 0 0] sets the units based on [Mass Length Time Temperature Quantity Current
Luminous intensity]. The kinematic viscosity dimensions are Length®/Time or in SI units: m’/s.
The value of the kinematic viscosity is set to 0.01. Remember that this value must always be
consistent with the Reynolds number,

Re =UL/nu
0/ directory (Initial and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ directory.

For the icoFoam solver only U and p files are needed in the 0/ directory.

Open the 0/U file; it should look like the screen capture below.

72

|

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / 0 peration | Version: 1.5 |
| W A nd | Web: http://www.OpenFOAM.org |
‘I W\ M anipulation | |
N o e /
{FoamFile
’{

version 2.0;

format ascii;

class volVectorField;

object U;
()
‘// =+ * f o * o* * o * * & * * % o o & de k3 o Je 2 £ Je * * % * vo * * i * //
dimensions [01-10000];

internalField uniform (0 0 0);

boundaryField
{
movingiWall
{
type fixedValue;
value uniform (1 0 0);
}
fixedwWalls
{
type fixedValue;
value uniform (0 0 0);
}
frontAndBack
{
type empty;
, }
}
[/ FERERERRIEERLbdkAE hhAh L R I T T T * ok 77
In the 0/U file notice:

U is a vector field quantity. All U values must be set in vector format, (X X X).
The U dimensions must match the vaniable by M,L,T,... so velocity is [0] -1 0 0 0 0]

The “internalField” sets the initial flow field condition for U. For this case the fluid 1s
initially at rest (Ux,Uy,Uz = 0)

5]

The “boundaryField” sets velocity boundary conditions for ALL surfaces. All surfaces
must be included with proper BC’s. All surface names must match the
constant/polyMesh/boundary surface name exactly. The order of surfaces is not important, but
the names must match identically.

The velocity boundary conditions for the three surfaces are as follows:
The movingWall is set with
type fixedValue;
value uniform (1 0 0);
for the top lid to move with velocity of Ux=1.
The fixedWalls are set with
type fixedValue;
value uniform (0 0 0);
to apply the no-slip boundary condition to the walls.
The frontAndBack surfaces are set with
typc empty,
because they are the 2-D boundaries. ALL 2-D boundaries must have type set to empty.

Again, the order of the surfaces in the 0/... files doesn’t matter, but the names and types
MUST be consistent with thosc listcd in the constant/polyMesh/boundary file.

Now open the O/p file, it should look likc the screen capture below.

74

ﬂ” ———————————————————————————————— T e e T T \
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.5 |
| \\ / A nd | Web: http://www.OpenFOAM.org |
| \\/ M anipulation | |
A o o - */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p:
;/’*ﬁ-f:"rk*ti{r““frt'r*"rl"**‘i*f'ik{'*""'*"'.'i*!"f’ﬁiff;f’v‘ //
dimensions [02-20000];
internalField wuniform O;
boundaryField
{
movingWall
{
type zeroGradient;
}
fixedlialls
{
type zeroGradient;
}
frontAndBack
{
type empty;
}
}
// khkdrdedbehbdevehirdde bbb hbhbbdbbhbcdbhbbtbbrdobtbtbthtt bbbttt thbdbhbbtdbhbbrdb bbb bd //

In the 0/p file notice:

p is a scalar field quantity. All p valucs must be set as a sealar, X, value.

The p dimensions must mateh the variable by M,L,T,... so pressure is {0 2 -2 0 0 0 0],
becausc in icoFoam p is actually the pressure dividcd by the density, thus the SI units would be

DD,
m/s”.

The “internalField” sets the initial eondition for p. For this case (and most others) we do

not care about the absolute value of thc pressure, p, so we just set it to O for easc.

75

The boundaryField scts pressure boundary conditions for ALL surfaccs. All surfaces
must be included with proper BC’s that are consistent with the constant/polyMesh/boundary
surfaces.

The pressure boundary conditions for the three surfaces are as follows:
The movingWall is set with
type zeroGradient;
for the moving wall.
The fixedWalls arc sct with
type zeroGradient;
for the no-slip wall.
The frontAndBack surfaces are set with
type empty;
because they are the 2-D boundaries. ALL 2-D boundaries must have fype set to empty.
systeny/ directory (Solver Settings)

Now we will look at some of the solver settings and controls that are locatcd in the
system/ directory. We will focus on the controlDict, fvSolution, and fvSchemes files. We
already used the createPatchDict to merge multiple surfaces.

Open the system/controlDict dictionary file. It should look like the screen capture below.
The controlDict file sets all of the run-timc paramcters and output information. This is also
where run-time libraries and functions, such as force outputs over a patch and dynamic mesh
libraries are specified.

76

application icoFoan;

startFrom startTime;
startTime 0;

stopAt endTinme;
endTine 0.3}
deltaT 0.00001;
‘writeControl timeStep:

writeInterval 3000;
purgeWrite 0:

writeFormat ascii;
writePrecision 6;
writeCompression uncompressed.
timeFormat general,
‘timePrecision 6:

runTimeModifiable yes;

// Wit drdeddededodededied oo hddrddk bbb bbb bhbkb bbb dddddw ki

ﬁ” -------------------------------- e e T e o
F E=a2===Es | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
X / 0 peration | Version: 1.5 |
| \\ / A nd | Web: http://www.OpenFOAM. org |
| \\/ M anipulation | |
N eSS S S et = S CE e S R e Ry /
FoamFile
{

version 2.:05

format ascii;

class dictionary;

object controlDict;
}/ 4 * * 9 w d w K k * K k * d d ok & ok k k * * k ® k k k & & 3 /

2 2 b bt de e e e e e *k S/

The solver specified in application input does not matter. The solver is specified on the

command line or in a script file. Thus, this 1s an insignificant line for our purposes.

The solver settings are fairly obvious, and more detail is providcd on page U-108 of the

77

User’s Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only
cover a broad view of the file.

Wc know that icoFeam is a transient solver. We see that we will run the simulation from
0 to 0.3 seconds in time steps of 0.00001 seconds with the solver writing output information
every 3000 time steps (t=0.03, 0.06, 0.09, ...). The data will be written in ASCII format in
directories that are denoted by time 6 digits long. Notice that runTimeModifiable 1s chosen to
yes, this means that we ean make changes to the controlDict in the middle of a run, and they will
be adjusted on the fly, as opposed to having thc settings set in stone for the whole caleulation.

One important note is that to start a calculation from a previous solution the startFrom
entry must be switched to /atestTime, and desired start time information (dircctory and BC's)
must be present in the case directory.

Now open the system/fvSolution dictionary file. It should look like the sereen capture on
the next page.

The fuSolution file contains linear solver information as wcll as solver algorithm settings.

The solvers section contains linear solver settings for pressure and veloeity. Note that for
this case we arc using preconditioned conjugate gradient solvers (PCG for symmetric matrices
and PBiCG for asymmetrie matrices), but we also commonly use multi-grid solvers (GAMG,
AAMG, ete.). The solver tolerance and relative toleranee settings are not important right now.
The minlter command sets a minimum number of times thc linear solver will iterate on a
variable. It is usually recommended that the uscr always set a minimum number of iterations > 0
to prevent the solver from prematurely not solving for a variablec.

Below the solvers section arc pressure-implicit split-operator (PISO) algorithm control
settings. These PISO settings are not particularly useful to the user at this time, so only a broad
view of what each setting means is given. Also, note that the PISO algorithm must be used for
all transient solvers and the SIMPLE algorithm must be used for all steady-state solvcrs. For this
casc wc have nCorrectors set to 2, which means that we will solve the prcssure cquation twice
per time iteration. The value of nNonOrthogonalCorrectors is set to 0. This parameter is not
particularly important to the uscr at this moment. Notice that we have set ccll number 0 as our
rcferenec cell, where thc referencc value is 0. This is the reference pressure for the
ineompressible solver.

78

B“ -------------------------------- = Gt = * o N\
I A\ / F ield | OpenFOAM: The Open Source CFD Toolbox i
[N 7 0 peration | Version: 1.5 |
| Nk 7 A nd | Web: http://www.0penFOAM.org |
| N7 M anipulation | |
e e oo /
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object fvSolution;
}
// e A SR TU P T S T ORI T VU5 R - P GRS R S T S (RN © TR R S OO T T N U S DR e S SR I S //
solvers
{
p PCGC
{
preconditioner DIC;
tolerance le-06;
relTol 0;
minlter S;
Y5
U PBiCG
{
preconditioner DILU;
tolerance 1e-05;
relTol 0;
minlter S;
Y
}
PISO
{
nCorrectors 2;
nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefValue 0;
}
kdcdedrdk s hht e de de e dede g dok ke TE L wkAk k% % /’-

Now open the system/fvSchemes dictionary file. It should look like the screen capture
below.

Many of the fuSchemes settings are not particularly useful to the user at this time, so only
a broad view of what each setting means is given. For more detail on these settings consult page
U-110 of the User’s Guide. More detail of the discretization settings is given in the simpleFoam
and rasinter Foam tutorials.

79

J e = G = e
I ========= |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
| \\ / 0 peration | Version: 1.5
| N A nd | Veb: http://www.OpenFOAM.org
| N\ M anipulation |
L e e e e
FoamFile
{
version 2.0
format ascii;
class dictionary;
object fvSchenmes;
}
// k k Kk & b k Kk Kk k * &k Kk Kk * k& k k d k % k w k k k Kk * % % k %
ddtSchemnes
{
default Euler;
}
gradSchemes
{
default Causs linear;
grad(p) Gauss linear;
}
{divSchemes
{
default none;
div(phi,U) Gauss linear;
}
laplacianSchemes
{
default none;

laplacian(mu,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;

)

interpolationSchemes

{
default linear;
interpolate(HbyA) linear:
}
'snGradSchemnes
{
default corrected;
}
fluxRequired
{

default no;

i

L

i

The fvSchemes file seetions deelares the following settings:
ddt > time discretization
gradSchemes > gradient term diseretizations
divSchemes > divergenee terms diseretization
laplacianSchemes - Laplacian terms diseretization
interpolationSchemes -> interpolation of values from cell centers to eell face eenters
snGradSchemes > surface normal gradient evaluation at eell faces
SluxRequired > lists fields where flux is generated in the application

For all of the fvSchemes fields a default value can be specified, or default can be set to
none which means that the user must enter all values for the appropriate variables themselves.

Running icoFoam

Now we are ready to run. Type icoFoam on the ecommand line like the screen capture
below, and hit “ctrl+c” to take a look at the first few iterations (piping the sereen dump to a log
file by using “icoFoam | tee log” is another option).

81

[kdelaneyORetech tut_allCoarseStruct]$ icoFoam

|7* s e e e e S A e Fa =N
| E=====ars | |
I3 NS / F ield | OpenFOAM: The Open Source CFD Toolbox

145\ / 0 peration | Version: 1.5-dev

| W\ / A nd | Web: http://www,OpenFOAM . org |
I \\/ M anipulation | |
\t ___ r\/
|[Exec : icoFoam

Date : Jun 30 2010

Time : 14:53:06

Host : Retech

P1D 1 20508

Case : /home/kdelaney/NavyFoam_runs/run/flat_plate/movingWallCavity/tut_allCoarseStruct
nProcs : 1

//ﬂ-‘ﬁ‘ﬁl'\‘l"'t"" "ﬁ""tv‘"ﬁ"'c"ﬁ//

Create time

|Create mesh for time = 0
Reading transportProperties
§Reading field p

'Reading field U

{Reading/calculating face flux field phi

|Starting time loop
Fine = le-0S

Courant Number mean: O max: O velocity magnitude: 0

IPBiCG: Solving for Ux, 1lnitial residual = 1, Final residual = 1.68372e-20, No Iterations §

PBiCC: Solving for Uz: solution singularity

IPCC: Solving for p, Initial residual = 1, Final residual = 6.77855e-07, No lterations 138

|time step continuity errors : sum local = 1.14833e-15. global = 3.92084e-26, cunulative = 3.92084¢-26
IPCC: Solving for p, lnitial residual = 0.0407237, Final residual = 8.83925e-07, No lterations 126
jtime step continuity errors : sum local = 3.57796e-15, global = -5.09959e-25, cumulative = -4.7075e-25
|[ExecutionTime = 0.13 s ClockTime = 0 s

[Time = 2e-0S

Courant Number mean: 1.36506e-07 max: 9.7988e-05 velocity magnitude: 0.0362317

TBiCC: Solving for Ux, Initial residual = 0.134603, Final residual = 1.07427e-21, No lterations 5
'PB1CG: Solving for Uz, Initial residual = 0.333103, Final residual = 8.02106e-21., No lterations §
IPCG: Solving for p, lnitial residual = 0.100492, Final residual = 8.49585e-07, No lterations 125
]tine step continuity errors : sum local = 3.78654e-15, global = 3.849e-25, cumulative = -B.58504e-26
PCG: Solving for p, lnitial residual = 0.0020439, Final residual = 9.96011e-07, No lterations 112
|time step continuity errors : sum local = 4.8709e-15, global = 4.60384e-25, cumulative = 3.74534e-25
ExecutionTime = 0.2 s ClockTime = 0 s

Time = 3e-0S
|Courant Number mean: 2.66818e-07 max: 0.000190662 velocity magnitude: 0.0705446

PBiCC: Solving for Ux, Initial residual = 0.0711115, Final residual = 5.11184e-22, No lterations 5
PB1CG: Solving for Uz. Initial residual = 0.196949. Final residual = 5.2058le-21. No lterations &%

Some observations from the first few iterations:

You can see that the solver started from time equal to 0 seconds and is marching in
inerements of le-5 seconds.

For each iteration the pressure equation is solved twice and the velocity equations are
solved once. For each vanable linear solver we can see the initial residual, final residual, and the
number of iterations it took to drop from the initial to the final residual. We set all of these
tolerances and iteration eriteria in the system/fvSolution dictionary file.

There are also Courant number and eontinuity error reports.

The best way to typically monitor the solution is to make sure that the velocity magnitude
stays at a reasonable number, and make sure that initial pressure residuals are decreasing or are
holding steady at an acceptable value.

The last line of the time iteration produces execution and clock time information. This is
useful in gauging the efficiency of your solution.

Now let the icoFoam solver go until 0.5 seconds to get a converged solution.

Post-Processing

Notice that there are many time directories in your case directory. Each of these
directories contains output information for their respective time step.

To look at the post-processed results simply type the following commands, depending on
the post-processing tool of choice:

>> foamToEnSight -latestTime => to look at the results in EnSight
>> foamToVTK -latestTime -> to look at the results in ParaView

where the command —/atestTime 1s used to only look at the results from the last output time step.
To look at the results for all time steps simply leave off the —/atestTime command, and to look at
the results for a specific time (ie 0.005) use —time 0.005.

To look at the results in ParaFoam, no additional commands arc needed, simply open
ParaFoam in the case directory.

Your results should look like the velocity magnitude (Vmag) and axial velocity
(Vmag/[x]) contours below.

83

84

Appendix D: simpleFOAM Body-1 Tutorial

This tutorial involves using the turbulent, steady, ineompressible solver for a 3-D body-
of-revolution, the Body-1. Only half the body is solved, as symmetry is assumed. The domain is
non-dimensionalized by length, so all lengths in thc domain are normalizcd by body length. First,
we will go over pre-processing and case setup, then we will run the test case, and finally we will
look at some post-processed results.

For more detailed information on the OpenFOAM code and settings consult the User's
Guidc: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf.

Pre-Processing and Case Setup

Upon looking in the ease directory (sereen eapture below) you will noticc that there are
directories labeled system and 0, and a file named transportProperties. There is a parallel
processing script named o FOAM.scp. There is also a file labeled bodyl _Box_ASCII. fluent.cas,
which is a mesh exported from Gridgen in Fluent ASCII doublc precision format. We will
discuss the existing files and direetories latcr, but now we need to import the fluent .cas filc into
OpenFoam. This will be done using the command fluentMeshTo Foam.

I[delaneyk@anazon bodyl_Tutoriall$ 1

!total 237M

-rw-r--r-- 1 delaneyk users 1.6K Apr 8 15:17 transportProperties

-rwxr-xr-x 1 delaneyk users 4.6K Apr 8 15:17 RASProperties

Idrwxr-xr-x 2 delaneyk users 80 Apr 8 15:17 system

drwxr-xr-- 2 delaneyk users 81 Apr 8 15:17 0

-rw-r--r-- 1 delaneyk users 658 Apr 8 15:17 oFO0AM.scp

-rw-r--r-- 1 delaneyk users 237M Apr 8 15:31 bodyl_Box-ASCII.fluent.cas
Mesh Input

Now enter the fluentMeshToFoam ecommand as seen below and view the output from
the scrcen dump. Your output should be the same as thc scrcen captures on the next pages.

There is a lot of information on the screcn dump, most of which is self explanatory. The
most important part to notice is the last two lines of text in the screen dump which tcll you that
the mesh information has becn written into a directory named polyMesh inside a newly created
directory named constant. Finally thc command ends successfully with the “End.” statement.

85

[delaneyk@amazon bodyl_Tutorial]$ fluentMeshToFoam bodyl_Box-ASCII.fluent.cas

et DL et e L e e 28
l ========= l l
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.5-dev |
| NN\, A nd | Revision: exported |
| \\/ M anipulation | Web: http://www.OpenFOAM.org |
\ = e e 2
{[Exec : fluentMeshToFoam bodyl Box-ASCII.fluent.cas

Date : Apr 08 2010

Time : 15:31:37

Host : amazon.dt.navy.mil

PID : 19865

|Case : /san/home/delaneyk/NavyFOAH-1.5-dev-rev995/delaneyk-1. 5-dev/run/bodyl/boundingBoxFar
InProcs : 1

‘//q < * & LI 2 B T R Y AN SRR IR T SN + @ -~rr"-‘rv‘»--w'r~-<»//

iCreate time

T--> FOAM Warning :
From function dllibraryTable::open(const fileName& functionLibName)
in file db/dILibraryTable/dlLibraryTable.C at Iine 86
could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/1ib/1inux64CccDPOpt/1i

ModelllprintCoeffsEv

Dimension of grid: 3

20Number of cells: 2180547

nunber of faces: 5106844

Number of points: 860613

Other readCellGroupData: a 1 2145¢3 1 0

Reading mixed cells

Reading mixed faces

Reading uniform faces

Reading uniform faces

Reading uniform faces

Reading uniform faces

Reading uniform faces

Reading uniform faces

Reading mixed faces

[Reading points

[Read zone2:10 name:fluid patchTypelD:fluid

[Reading zone data

[Read zone2:8 name:symmetry patchTypelD:symmetry
|Reading zone data

[Read zone2:6 name:outlet patchlTypelD:pressure-outlet
|Reading zone data

|[Read zone2:5 name:inlet patchTypelD:inlet-vent
[Reading zone data

|Read zone2:4 name:farfield patchTypelD:pressure-far-field
Reading zone data

Read zone2:1 name:bow patchTypelD:wall
Reading zone data

Read zone2:2 name:midbody patchTypelD:wall
Reading zone data

Read zone2:3 name:stern patcthneID:wall
(screen output continues on the next page...)

86

|

Reading zone data

Read zone2:9 name:interior-faces patchTypelD:interior
!Reading zone data

FINISHED LEXING

dimension of grid: 3

Creating shapes for 3-D cells

Building patch-less mesh...--> FOAM Warning :

From function polyMesh::polyMesh(...

construct from shapes...)

in file meshes/polyMesh/polyMeshFromShapeMesh.C at line 581
Found 111916 undefined faces in mesh; adding to default patch.

done.

Building boundary and internal patches.
naxZonelD: 9

|Creating patch
Creating patch
Creating patch
Creating patch
Creating patch
|Creating patch
Creating patch
Creating patch
Patch interior-faces
new patch
new patch
new patch
new patch
new patch
new patch
new patch

Adding
Adding
Adding
Adding
|Adding
Adding
Adding

0
1
2
8
4
5
6

7

for
for
for
for
for
for
for
for

bow

nidbody of type wall as patch 1

zone:
zone:
zZone:
zone:
zZone:
zone:
zZone:
zZone:

WDV WN = O

start:
start:
start:
start:
start:
start:
start:
start:
is internal to

1 end: 4994928 type:

4994929
5001641
5013073
5035505
5037283
5037725
5038167
the mesh

of type wall as patch O

end:
end:
end:
end:
end:
end:
end:

5001640
5013072
5035504
5037282
5037724
5038166
5106844

and is not

stern of type wall as patch 2
farfield of type patch as patch 3
inlet of type patch as patch 4

outlet of type patch as patch §

interior name: interior-faces

type:
type:
type:
type:
type:
type:
type:

wall name: bow

wall name: midbody

wall name: stern
pressure-far-field name: farfi
inlet-vent name: inlet
pressure-outlet name: outlet
symmetry name: symmetry

being added to the boundary.

symmetry of type symmetryPlane as patch 6

Default patch type set to empty

Writing mesh... to “constant/polyMesh” done

End

Now run the checkMesh command for two reasons:

e to make sure the mesh was imported correctly
e to asses the quality of the mesh for the OpenFOAM solver

Your checkMesh output should look like the screen captures on the next pages.

87

[delaneyk@amazon bodyl_Tutoriall]$ checkMesh

/ﬁ _______________________ TR TSN PP WP Y P S Py S SR RS S NI N § S S Py S 1L LT t\
I ========= I I
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I\ / 0 peration | Version: 1.5-dev |
| \\ / A nd | Revision: exported |
| NN/ M anipulation | Web: http://www.0OpenFOAM.org |
Rk e =
Exec : checkMesh

Date : Apr 08 2010

Tine : 15:36:20

Host : amazon.dt.navy.mil

PID : 21145

Case : /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/delaneyk-1.5-dev/run/bodyl/boundingBoxFar

nProcs : 1

//v"ﬁﬁ* Qfv""*“'ﬁQﬁﬁﬁﬁﬁﬂ‘.\i“iﬁhﬁﬁﬁli'\‘IQQ“QQ//

Create time

--> FOAM Warning :

Fron function dlLibraryTable::open(const fileName& functionLibName)

in file db/d1lLibraryTable/d1LibraryTable.C at line 86

could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/1ib/1inux64GccDPOpt/1i
ModelllprintCoeffsEv
Create polyMesh for time = constant

Time = constant

Mesfi stats

points: 860613
faces: 5106844
internal faces: 4994928
cells: 2180547

boundary patches: 7
point zones: 0
face zones: 0
cell zones: 0

Number of cells of each type:

hexahedra: 0
prisms: 1379584
wedges: 0
pyramids: 0
tet wedges: 0
tetrahedra: 800963
polyhedra: 0

Checking topology. ..
Boundary definition OK.
Point usage OK.
Upper triangular ordering OK.
Face vertices OK.
Number of regions: 1 (0K).

Checking patch topology for multiply connected surfaces ...

Patch Faces Points Surface topology

bow 6712 3459 ok (non-closed singly connected)
nidbody 11432 5882 ok (non-closed singly connected)
stern 22432 11490 ok (non-closed singly connected)
farfield 1778 950 ok (non-closed singly connected)
inlet 442 252 ok (non-closed singly connected)
outlet 442 252 ok (non-closed singly connected)

{Screen capture continues on next page...)

88

symmetry 68678 50479 ok (non-closed singly connected)

Checking geometry...
This is a 3-D mesh
Overall domain bounding box (-10 -10 0) (10 10 10)
Mesh (non-empty) directions (1 1 1)
Mesh (non-empty, non-wedge) dimensions 3
Boundary openness (-1.71587e-18 -1.21515e-17 -5.8041e-16) Threshold = 1le-06 OK.
Max cell openness = 5.13185e-14 OK.
Max aspect ratio = 5$64.729 OK.
Minumun face area = 5.88008e-10. Maximum face area = 1.24594. Face area magnitudes OK.
Min volume = 6.96628e-14. Max volume = 0.421459. Total volume = 4000. Cell volumes OK,
Mesh non-orthogonality Max: 61.1137 average: 9.70308 Threshold = 70
Non-orthogonality check OK.
Face pyramids OK.
Max skewness = 1,25241 OK.

Mesh OK.

End

There is a lot (probably too much) of information with the checkMesh screen dump. At
the top, the Mesh stats section shows that the mesh has 2.18 million total cclls/clements, and the
Number of cells of each type section shows 1.38 million arc prisms and 0.8 million are
tetrahedral elements. Below that, we see that the topology checks out OK and that all the surfaces
are correctly connectcd.

Finally, the Checking geometry... section displays mesh quality statistics. This section
gives a lot of information, but the most important parts are thc aspect ratio, non-orthogonality,
and skewness. For this case all check out OK, so we are free to proceed knowing the mesh is of
high quality.

Sometimes it is not possiblc to creatc a mesh without any high aspect ratio, non-
orthogonal, or skewed cclls. In fact, most mcshes crcated will contain bad cclls, and run fine.
However, at some point (which is not quantitatively clear) the mesh will be so poor it cither
won'’t run, or it will take a long time to run. There aren’t exact guidelines on OpcnFOAM mesh
quality; it simply takes experience running various meshes.

constant/ directory and the createPatch Command

All of the mesh gecomctry details arc stored in the constant/polyMesh directory. The
boundary filc is typically the only one in polyMesh directory that gets edited.

Now open up your constantpolyMesh/boundary file, which contains all of the
information for surfaces that were imported from your mesh. It should look like the screen
capture seen below.

The information at the top of the file (under the FoamFile header) gives a description of
the file (version, format, class, ctc.) and is most likely only useful to morc cxpericnced users, but
at the very least it is always useful as a labcl to let you know where you are. Further down the
file you can scc that 7 surfaces (bow, midbody, etc.) were imported with the same boundary
names that werc created in Gridgen. Each surface is described by the type of OpenFoam surface,
nFaces and startFace. Only the type is of conccmn to the user at this stage and that will be
discussed in more detail later on.

89

JART TR *~ C+s =° \
illiess====== | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ 7 0 peration | Version: 1.5-dev
| XN 2% A nd | Revision: exported
i \\/ M anipulation | Web: http://www.0OpenFOAM.org |
* -=*/
FoanFile
{
version 2:10%
format ascii;
class polyBoundaryMesh;
location "constant/polyMesh™;
object boundary;
3‘/] » J . & & & * . & * ® * & & & * * & & & d] £ 2 * o ¢ - //
7
[¢
bow
{
type wall;
nFaces 6712;
startFace 4994928,
)
nidbody
{
| type wall;
‘ nFaces 11432;
startFace 5001640,
}
stern
{
type wall;
nFaces 22432;
startFace 5013072;
}
farfield
{
type patch;
nFaces 1778;
startFace 5035504;
}
inlet
{
type patch:
nFaces 442;
startFace 5037282;
)
outlet
{
type patch;
nFaces 442;
startFace 5037724;
}
symmetry
(
type synmetryPlane;
nFaces 68678;
startFace 5038166;
|)
ﬁ

Often times the boundary file needs to be altered from what is originally created during
the import process. For example, the hull might be imported as 5 different surfaces and you

would like to group them together as one surface. For this case we will group the separate hull
surfaces together to avoid redundancy and make life casier.

To group separate surfaces together, we use the createPatch command. For now let’s say
that wc want to create a group of surfaces for what will be the hull. The filc that allows us to
group surfaces is called createPatchDict and it is located in the system dircctory.

If you open your system/createPatchDict filc you will noticc that it needs to be edited to
group the surfaces from constant/polyMesh/boundary. Again, there is detailed information about
this dictionary file underneath the FeamFile header, and can be used as a referencc to the uscr.
Underneath the FoamFile section are the matchToTolerance and pointSync commands which
are not important right now and should bc left as is. Next, you will see a patches section, which
1s where we will do our editing to join surfaces under one boundary name and type.

The uscr should edit their createPatchDict filc patches() section to look like the screen
capture on the next page. The only patch will group the hull, midbody, and stern surfaces into
one boundary named Aull, and this new boundary will remain a type wall.

Now we are ready to combinc the surfaces, but first it is generally a good idea to copy
our constant directory before we combine our surfaces, so there is always a reference. So for
Linux uscrs, simply:

>> ¢p —r constant orig_constant

to copy our reference constant folder to orig_constant. Then in the case directory cnter
“createPatch” in the command line. The rcsulting screen dump should look like the following
screen capture.

91

T A8\ / F 1eld | OpenFOAM: The Open Source CFD Toolbox
[A\\ / 0 peration | Version: 1.0
| A< A nd | Web: http://www.openfoan.org
| AN/ M anipulation |
N o e ovon et e e ey e Ty e e e
FoamFile
{
version 2405
format ascii;
root e
case "body 1”;
instance S
local gy
class dictionary;
object createPatcheDict;
}
7/ o W v e TRt o £ e : - e s e

// Tolerance used in matching faces. Absolute tolerance is span of
// face times this factor.
natchTolerance 1E-3:

// Do a synchronisation of coupled points.
pointSync true;

// Patches to create.
// If no patches does a coupled point and face synchronisation anyway.
ipatches

(
{
nane hull;
type wall;
constructFrom patches;
patches (bow midbody stern);
}
):
J AT T S EEL R LR PR e

92

{[delaneyk@amazon bodyl_Tutoriall$
[delaneyk@amazon bodyl _Tutorial)$ createPatch

F A et et et =N\
l ========= | l
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
Il \\ 7 0 peration | Version: 1.5-dev]
ll A\ A nd | Revision: exported |
| \\/ M anipulation | Web: http://www.OpenFOAM.org |
A o e e /
Exec : createPatch

Date : Apr 08 2010

Time : 15:46:37

Host : amazon.dt.navy.mil

PID 1 21526

Case : /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/delaneyk-1.5-dev/run/bodyl/bounding!

nProcs : 1

//Qiﬁ’ifﬁ% A ok e kR ko kA /

iCreate time

--> FOAM Warning :
From function dllibraryTable::open(const fileName& functionLibName)
in file db/dlLibraryTable/dlLibraryTable.C at line B6

could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/1ib/linux64GccDP(
.eBRASModelllprintCoeffsEv
Reading createPatchDict.

Using relative tolerance 0.001 to match up faces and points
[Create polyMesh for time = O
‘Adding new patch hull of type wall as patch 7

Moving faces from patch bow to patch 7
Moving faces from patch midbody to patch 7
Moving faces from patch stern to patch 7

Doing topology modification to order faces.

Synchronising points.
Points changed by average:0 max:0

Removing patches with no faces in then.

Removing empty patch bow at position O

[Removing empty patch midbody at position 1

Removing empty patch stern at position 2

|Renoving patches.

--> FOAM Warning :
From function forces::forces(const objectRegistry& obr, const dictionary& dict)
in file forces/forces.C at line 78
No fvMesh available, deactivating.

Writing repatched mesh to 1

End

93

You will notice that the second to last line states “Writing repatched mesh to 1. Thc
createPatch command will write the new patched surface information into a dircetory whose
name is the first time step output of your future run, which in this case is 1/.

So now you need to get rid of the old constant directory and movc the new 1/ directory to
constant. In Linux this would be accomplished by:

>> mv constant orig_constant
>> mv | constant

Now the transportProperties and RASProperties files need to be placed in the constant
directory. The transportProperties and RASProperties files must ALWAYS be present in the
constant dircctory when using simpleFoam. In Linux this would be accomplished by:

>> mv transportProperties constant/
>> mv RASProperties constant/

Open the constant/polyMesh/boundary file and you will see that the three patches are
now grouped together in the Aull patch.

Now we have the geometry imported and named as we want for the run. A good next step
is to export the geometry into a visual package (EnSight, ParaView, ete.) and make sure that all
surfaces are grouped and labeled ecorreetly. To export the geometry, use foamToEnsight for
EnSight, foamTeVTK for ParaView, and no additional command is needed for ParaFoam. So
now takc a minute or two and inspect your geometry in your package of choiec. Your geomctry
should look like the Figure below, with the appropriate surface labels in the post-processor.

94

Material Properties

The next step is to set up the material properties for the fluid. For the simpleFoam solver,
only the kinematic viscosity is required in the constant/transportPropertics dictionary file. Open
the transportProperties file, it should look like the sereen capture below. No editing is neeessary,
Jjust note that kinematic viscosity is always set in transportPropertics.

e e e e e e e "\
|| #=t=ceas [|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
!I \N\ ¥ 0 peration | Version: 1.3 |
| W A nd | Web: http://www.openfoam.org |
| N\ M anipulation | |
e Rt L LT L T /
FoamFile
{

version 2.0;

format ascii;

root

case H

instance “constant”;

local Sete

class dictionary:

object transportProperties;
}
// 3 o Th . 7/
transportModel Newtonian;
nu nu [0 2 -1000 0] 1.5151e-7;
1}

The kinematie viscosity, nu, is entered in as:
nu nu [02-1000]1.5151e-7;

where [0 2 -1 0 0 0 0] scts the units based on [Mass Length Time Temperature Quantity Current
Luminous intensity]. The kinematic viscosity dimensions are Lcngth/Time or in SI units: m%s.
The value of the kinematie viseosity is sct to //Re where the Reynolds number is 6.6M (/. = U -
1.0). Remember that this value must always be consistent with the Reynolds number,

Re = UL/nu
0/ directory (Initial and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ directory.

For the icoFoam solver only U and p files are nceded in the 0/ directory.
Open the 0/U file; it should look like the sereen capture on the following page.
In the 0/U file notice:

U is a vector field quantity. All U values must be sct in vector format, (X X X).

95

The U dimensions must match the vanable by M,L,T,... so velocity 1s /0 1 -1 0 0 0 0]

The internalField sets thc initial flow field condition for U. For this case the fluid 1s
initially at free stream everywhere (Ux=1 and Uy,Uz = 0)

The boundaryField sets velocity boundary conditions for ALL surfaces. All surfaces
must be included with proper BC’s. All surfacc namecs must match the
constant/polyMesh/boundary surface name exactly. The order of surfaces 1s not important, but
the names must match idcntically.

The velocity boundary conditions for the five surfaces arc as follows:
The hull is set with
type fixedValue;
value uniform (0 0 0);
to apply thc no-slip boundary condition to the walls.
The farfield is sct with
type zeroGradient;
to apply a zero velocity gradient at the farfield boundaries.
The inlet is sct with
type fixedValue;
value wuniform (1 0 0);
for inflow velocity of Ux=1.
The outlet is set with
type zeroGradient;
to apply a zero velocity gradient at the outlet boundary.
The symmetry is sct with
type symmetryPlane;
All symmetry planc boundary conditions nced to have type symmetryPlane.

Again, the order of the surfaces in the 0/... filecs docsn’t matter, but the names and types
MUST be consistent with those listcd in the constant/polyMesh/boundary filc.

96

]
I A\ / F ield | OpenFOAM: The Open Source CFD Toolbox

1
|

I \\ / 0 peration | Version: 1.5-dev |
| \\ / A nd | Web: http://www.OpenFOAM.org |
| \\/ M anipulation | I
R o
FoamFile
{

version 2.0;

format ascii;

class volVectorField;

location 0™

object u;
}
//4\.‘;-ﬁﬁitt‘it".‘vir\i\ih\i-"\irﬁ“t."*t."‘t“t-_‘z**ﬂ:rt-1““r /
dinensions (01 -1000 0};

internalField uniform (1 0 0);

boundaryField
{
hull
{
type fixedValue;
value uniform (0 0 0);
}
farfield
{
type zeroGradient;
}
inlet
{
type fixedValue;
value uniform (1 0 0);
}
outlet
{
type zeroGradient ;
}
symmetry
{
type symmetryPlane;

]

Now open the 0/p file, it should look like the screen capture below.

In the 0/p file notice:
p is a scalar field quantity. All p values must be set as a scalar, X, value.

The p dimensions must match the variable by M,L,T,... so pressure is [0 2 -2 0 0 0 0],
because in icoFoam p is actually the pressure divided by the density, thus the SI units would be
m/s”,

The internalField sets the initial condition for p. For this case (and most others) we do
not care about the absolute value of the pressure, p, so we just set it to O for ease.

The boundaryField sets pressure boundary conditions for ALL surfaces. All surfaces
must be included with proper BC’s that are consistent with the constant/polyMesh/boundary
surfaces.

The pressure boundary conditions for the five surfaces arc as follows:
The hull is set with
type zeroGradient;
for the no slip wall.
The farfield is set with
type zeroGradient;
to apply a zero pressure gradient at the farfield boundarics.
The inlet is set with
type zeroGradient;
to apply a zero pressure gradient at the inlet boundary.
The outlet is set with
type fixedValue;
value uniform 0.0;
to set a reference pressure boundary at the outlet.
Note: At least one boundary in all domains must have a set pressure.
The symmetry 1s set with
type symmetryPlane;
All symmetry plane boundary conditions need to have type symmetryPlane.

98

ﬂ* ————— B el A S SN
| _——_—======= |

|

I A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.5-dev |
| NN\ A nd | Web: http://www.OpenFOAM.org |
| \\/ M anipulation | |
\t ____________________________________ sy _____t/
FoamFile
{

version 2:07

format ascii;

class volScalarField;

location "M

object p:
}

//itiiiiiiﬁiiﬁﬁiiiiiifviﬁﬁi‘)itiitiiti'hti//

dimensions [02-20000]);

internalField uniform O;

boundaryField
{
hull
{
type zeroGradient;
}
farfield
{
type zeroGradient;
)
inlet
{
type zeroGradient;
}
outlet
{
type fixedValue;
value uniform 0.0;
}
synmetry
{
type synmetryPlane;
}
}

99

Now open the 0/nuTilda file, it should look like the screen capture below.
In the 0/nuTilda file notice:
nuTilda is a scalar field quantity. All nuTilda values must be set as a scalar, X, valuc.

The nuTilda dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0
0 0], thus the SI units would be m7/s.

The internalField sets the initial condition for nuTilda. For this case it is sct to le-8,
which is ~10% of the kinematic viscosity.

The boundaryField sets nuTilda conditions for ALL surfaces. All surfaces must be
included with proper BC’s that arc consistent with the constant/polyMesh/boundary surfaces.

The nuTilda boundary conditions for the five surfaces are as follows:
The hall is sct with
type fixedValue,
value uniform 0;
for the no slip wall.
The farfield is set with
type zeroGradient;
to apply a zero nuTilda gradient at the farfield boundaries.
The inlet 1s set with
type fixedValue;
value uniform le-8;
to set 10% of the kinematic viscosity at the inlet boundary.
The outlet is set with
type zeroGradient;
to apply a zero nuTilda gradient at the outlet boundary.
The symmetry is set with
type symmetryPlane;

All symmetry plane boundary conditions need to have type symmetryPlane.

100

FoamFile

(
version
format
class
location
object

}

// M

dimensions
internalField

soundaryField

{
hull
{
type
value

}
farfield

{
type
}
inlet
{
type
value

}
outlet

{
}
synmetry

(
}

type

type

’/

I
F ield | OpenFOAM: The Open Source CFD Toolbox
0 peration | Version: 1.5-dev
A nd | Web: http://www.OpenFOAM.org
M anipulation |

2.0;

ascii;
volScalarField;
Q"

nuTilda;

[02-10000];

uniform le-08;

fixedValue;
uniform O;

zeroGradient;

fixedValue;
uniform le-08;

zeroGradient;

symmetryPlane;

101

Now open the 0/nut file, it should look like the screen capture on the next page.

This filc is required by the simpleFoam solver when the Spalart-Allmaras turbulence
model is used, but its turbulent viscosity input values are not used in the calculations. It is most
likely a bug in the code. Nonethelcss, valid fypes and path namcs are requircd in the nut file.

In the 0/ nut file notice:
nut is a scalar ficld quantity. All nut values must be set as a scalar, X, value.

The nut dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0 0 0],
thus the SI units would be m%/s.

The internal Field scts the initial condition for nut. For this case it is set to le-6, this
value is not important to the calculation, so this is simply a general ballpark value.

The boundaryField sets nut conditions for ALL surfaces. All surfaccs must be included
with proper BC’s that are consistent with the constant/polyMesh/boundary surfaces.

The nut boundary conditions for the five surfaces are as follows:
The hull is sct with
type zeroGradient;
to apply a zero nut gradient at the no slip boundary.
The farfield is set with
type zeroGradient;
to apply a zero nut gradient at the farfield boundarics.
The inlet is set with
type fixedValue;
value uniform le-6;
to set turbulent viscosity at the inlct boundary.
The outlet is set with
type zeroGradient;
to apply a zero nut gradient at the outlet boundary.
The symmetry is set with
type symmetryPlane;

All symmetry plane boundary conditions need to have type symmetryPlanc.

102

|

| 2N / F ield | OpenFOAM: The Open Source CFD Toolbox
| \\ / 0 peration | Version: 1.5-dev |
| W ¥ A nd | Web: http://www.0penFOAM.org
| \\/ M anipulation | [
N e e A e R e e e e e /
FoanFile
{

version 2.03

format ascii;

class volScalarField;

location allo [0

object nut;
)
// r > b * & k & * & * * * & & * * * * * & ¥ - I R I R 2 R] * * "/
dimensions [02-10000);

internalField wuniform le-06;

soundaryField
{
hull
{
type zeroGradient;
)
farfield
{
type zeroGradient;
)
inlet
{
type fixedValue;
value uniform 1le-06;
)
outlet
{
type zeroGradient;
)
synmetry
{
type symmetryPlane;
)
}

system/ directory (Solver Settings)

Now we will look at some of the solver settings and controls that are located in the
system/ directory. We will focus on the controlDict, fvSolution, fvSchemes, and
decomposeParDict files. We already used the createPatchDict to merge multiple surfaces.

Open the system/controlDict dictionary file. It should look like the screen eapture below.
The controlDict file sets all of the run-time parameters and output information. This is also

103

where run-time libraries and functions, such as force outputs over a patch and dynamic mesh
libraries are specified.

|
I NN / F deld | OpenFOAM: The Open Source CFD Toolbox |
B ey / 0 peration | Version: 1.3
| \N / A nd | Web: http://www.openfoam.org |
| AW/ M anipulation | |
\ R N S T WS L — a/

// FoamX Case Dictionary.

FoanFile
{
version 2.0;
format ascii;
root “tutorial”;
case "bodyl";
instance "system”;
local =it
class dictionary;
object controlDict;
}
//A- I T R * k ke ok kb oW ok kb R E ke > * b * ‘v.~"-/l'

libs ("libnavyFiniteVolume.so"” "libnavylIncompressibleRASModels.so™);

application simpleFoan;
startFronm startTime;
startTime 0:

stopAt endline;
endTime 1500;
deltaT A
writeControl tineStep:

writelnterval 500;
purgelirite 0:
writeFormat ascii;
writefrecision 6;
writeCompression compressed;
timeFormat general;
tinePrecision 6;
graphFormat raw;

runTineModifiable yes;

(Screen capture continucd on ncxt page...)

104

functions

(
forces_Hull
{
type forces:;
//Library to load
functionObjectLibs ("libforces.so");
//Name of patch to integrate forces over
patches (hull);
//Reference density for fluid - can be changed later ...
rholnf 1.0;
//0rigin for moment calculations
CofR (0 0 0);
}
)
VAR T T R T e T T /

At the top, finite volume and turbulence model libraries are dynamically loaded by
libs(“..”); .

The solver specified in application input does not matter. The solver is specified on the
command line or in a seript file. Thus, this is an insignificant line for our purposes.

The solver settings are fairly obvious, and more detail is provided on page U-108 of the
User’s Guide (http://foam.sourceforge.net/doc/Guides-ad/UserGuide.pdf). For now we will only
cover a broad view of the filc.

We know that simpleFoam is a steady solver. Thus the solver will artificially iterate in
“time”, where 1 second is an iteration. Here we sce that the solver start from startTime = 0, and
will iterate in steps of deltaT = 1 until endTime = 1500. The data will be written in ASCII format
in directories according to writeInterval. Notice that runTimeModifiable is chosen to yes, this
means that we can make changes to the controlDict in the middle of a run, and they will be
adjusted on the fly, as opposed to having the settings sct in stone for the whole caleulation.

One important note is that to start a calculation from a previous solution the startFrom
entry must be switched to latestTime, and desired start time information (directory and BC’s)
must be present in the case directory. We will delve into this further later on.

Now open the system/fvSolution dictionary file. It should look like the sereen capture on
the next page.

105

I \\ / F ield | OpenFOAM:
I A\ / 0 peration | Version:
| NN A nd | Web:
| \\/ M anipulation |
FoanFile
{
version 2.0;
format ascii;
— s
case el
instance e
local S
class dictionary:
object fvSolution;
}
/7
solvers
{
p PCG
{
preconditioner DIC;
tolerance le-7;
relTol 0.01;
ninlter A
naxIter 200;
b
U PBiCGC
{
preconditioner DILU;
tolerance le-07;
relTol 0.0;
ninlter 1:
%
nuTilda PBiCG
{
preconditioner DILU;
tolerance le-08;
relTol 0.01;
ninlter 8 1
5
}
SIMPLE
{
nNonOrthogonalCorrectors 0;
pRefCell O;
pRefValue O;
}

(Screen capture continues on the next page...)

The Open Source CFD Toolbox

1.4

http://www.openfoan.org

106

relaxationFactors
{
p 0.3;
] 0.4;
nuTilda 0.4;
k 0.4;
| omega 0.4;
}
ﬂ/ X R R R LR hkhkhkhkhhkhkhhhhhhhkik * 4 n & & % A * X k& X * & a * % Ahkhkhki * * * A 7/

The fvSolution file contains linear solver information as well as solver algorithm settings

The solvers section contains linear solver settings for pressure, velocity, and turbulent
viscosity. Notc that for this case we are using preconditioned conjugate gradient solvers (PCG
for symmetric matrices and PBiCG for asymmetric matrices), but we also commonly use multi-
grid solvers (GAMG, AAMG, etc.). The solver tolerance and relative tolerance settings are not
important right now. The minlter command sets a minimum numbcr of times the linear solver
will iterate on a variable. It is usually recommendcd that the uscr always set a minimum number
of iterations > O to prevent the solver from prematurely not solving for a variable (we
recommend minlter = 1),

Below the solvers section are SIMPLE algorithm control scttings. These SIMPLE
settings are not particularly uscful to the user at this time, so only a broad view of what each
setting means is given. Also, note that the PISO algorithm must be used for all transient solvers
and the SIMPLE algorithm must bc uscd for all stcady-statc solvers. For this casc we have
nNonOrthogonalCorrectors sct to 0, which mcans that we will not solve the pressure equation
more than once per itcration. Note for future runs, if the pressure residuals arc increasing and the
solution is diverging/blowing up, nNonOrthogonalCorrectors can be increcased to iteratc the
pressure equation more and may lead to successful solution convergencc. Notice that we have set
cell number 0 as our reference cell, where the referencc value is 0. This is the reference pressure
for the incompressible solver.

Finally, the relaxation Factors section is where under-relaxation factors for cach variable
arc specified. Typical pressure values are 0.1-0.4 and typical velocity and turbulence quantity
values arc 0.4-1.0. Highcr values correspond to quicker solution advancement, but will be more
unstable (greatcr chancc of solution divergence).

Now open the system/fvSchemes dictionary file. It should look like the screen capturc
below.

107

|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I NN / 0 peration | Version: 1.3 |
| \\ / A nd | Web: http://www.openfoan.org |
| \\/ M anipulation | |
\i’ ___ "ﬁ/
FoanFile
{
version 2.0;
format ascii;
root %
case i
instance “system”;
local i
class dictionary;
object fvSchenmes;
}
//] ;% TR R N L B A 2 B L L R * //
ddtSchenes
default steadyState;
}
gradSchenmes
{
default Gauss linear;
}
divSchemes
{
default none;
div(phi,l) Causs linearUpwind celllinited Gauss linear 1.0;
div(phi,nuTilda) Gauss upwind:
div((nuEff*dev(grad(U).T()))) Gauss linear;
}
laplacianSchenmes
{
default Gauss linear corrected;
}
interpolationSchemes
{
default linear:
}
snGradSchemes
default corrected;
}
fluxRequired
{
default no;
p:
}

108

Many of the fuSchemes settings are not particularly useful to the uscr at this time, so only
a broad view of the settings is given here. For more detail on these scttings consult page U-110
of the User’s Guide.

The fvSchemes file sections declares the following settings:
ddt > time discretization
gradSchemes > gradient term discretizations
divSchemes > divergence terms discretization
laplacianSchemes > Laplacian terms discretization
interpolationSchemes > interpolation of values from ccll centers to cell face centers
snGradSchemes = surface normal gradient evaluation at cell faces
fluxRequired = lists fields where flux is generated in the application

Some fvSchemes notes:
(1) Because simpleFoam is a steady solver ddtSchemes default is sct to steadyStare.

(2) The div(phi,U) term is the convective velocity term, and “Gauss linearUpwind
cellLimited Gauss linear 1.0” corresponds to 2" order upwind.

(3) The div(phi, nuTilda) term is the convectivc turbulent viscosity term, and “Gauss
upwind’ corresponds to 1* order upwind.

(4) The div((nuEff*dev(grad(U).T()))) term requires a gradSchemes input, but is placed
in divSchemes. This is probably a bug.

For all of the fuSchemes ficlds a default value can be specified and only exccptions to the
default setting would nccd to be specified, or default can be set to none which mcans that the
user must enter all values for the appropriate variables themselves.

Now open the system/decomposeParDict dictionary file. It should look like the screen
capture on the next page.

There is a lot in the decomposeParDict that is beyond the scope of this tutonal, but the
important thing to notice is that the mesh will be split into 12 partitions (numberOfSubdomains
12;) using the metis method.

The number of 1’s in the metisCoeffs 2 processorWeights section must match the
number in numberOfSubdomains.

109

e e e "

http://www.openfoam.org

* * * * * & * * * &

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
| A\ 72 0 peration | Version: 1.3
| N\ o/ A nd | Web:
| \\/ M anipulation |
\v‘v
FoamFile
{
version 2.0;
format ascii;
root B
case s
instance e a
local i
class dictionary;
object decomposeParDict;
}
//-":.&'ﬁ"ﬁf-ﬁ‘r‘t&ﬁf{&ﬁﬁ**

aumber0fSubdomains 12;

nethod netis;
sinpleCoeffs
(
n (2 2 1);
delta 0.001;
)
rierarchicalCoeffs
(
n 1111):;
delta 0.001;
order XYZ:
}
netisCoeffs
{
processorbeights
(
D K8 LA (180 | 15 0 U e ot 0 P 4 ¢
E
}
nanualCoeffs
{
dataFile ey
}
distributed no:
// & e dr % & * & W W A de o e b o g de de ok e o b de EEEEZE 2R

110

i se i & &

___ o

«)/

X 1

Next exeeute the settings from decomposeParDict by entering “decomposePar” on the
ecommand line.

Upon completion of the domain deeomposition, your direetory will have twelve new files
(processor0 = processorll), which all eorrespond to the decomposed domain. Your ease
directory should look like the sereen eapture below.

Ty o Vo

Edelaneyk@anazon bodyl_Tutorial]$ 1

total 237M

-rw-r--r-- 1 delaneyk users 237M Apr 8 15:31 bodyl_Box-ASCII.fluent.cas
drwxr-xr-x 3 delaneyk users 21 Apr 8 15:49 orig constant
drwxr-xr-- 2 delaneyk users 46 Apr 8 16:41 0

drwxr-xr-x 3 delaneyk users 14 Apr 8 16:45 forces_Hull
drwxr-xr-x 3 delaneyk users 67 Apr 8 16:47 constant
drwxr-xr-x 2 delaneyk users 102 Apr 8 16:50 systenm
-rWw-Tr--r-- 1 delaneyk users 650 Apr 8 16:51 oFOAM.scp
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:52 processor(
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:52 processorl
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor2
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor3
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processord
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processorS$
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor6
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor7
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor8
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processor9
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processorl0
drwxr-xr-x 4 delaneyk users 29 Apr 8 16:53 processorll

[delaneyk@amnazon bodyl_Tutoriall$

Running the Case

We are now ready to run our ease. To execute this case on a eluster a seript file is needed.
For example purposes the seript file 06 FOAM.scp 1s shown below.

Notice that the 12 partition mesh will be run on 3 nodes with 4 proeessors per node. The
application simpleFoam is also specified in this file.

-It is now time to run the job, so in this case we type:
>>gsub oFOAM.scp

into the eommand line. A file named log will eontain all of the run information that would
normally be output in a sereen dump.

Remember that at the bottom of our centrelDict file, we speeified a function named
forces_Hull of type forces. This file caleulates forces over the patch specified by patches (hull
in our ease), and plaees them in a directory named forces Hull under a time file name that
corresponds to startTime.

Now let the file run out until its endTime of 1500 iterations.

111

MPBS -j oe

#PBS -o ./amazon.out

#PBS -e ./amazon.err

#PBS -S /bin/csh

#PBS -N SA_bl

#PBS -1 nodes=3:ppn=4
#PBS -1 walltime=42:00:00
#PBS -V

echo "cd to the directory”
cd $PBS_O_WORKDIR

setenv OPENFOAM_NP 12

echo “define parameters in exec statement”
set APPLICATION="simpleFoan"

set ROOT="."

set CASE="Body_1_Tutorial"”

|

echo "The current shell is $SHELL™
echo "Number of processors: $OPENFOAM_NP"

echo "Executing : $APPLICATION $ROOT $CASE"
echo "Working directory : $PBS_O_WORKDIR"

echo "The shell limits are:"

limit

echo "Starting executable....

I
mpirun -machinefile $£PBS_NODEFILE -np $OPENFOAM_NP $APPLICATION -parallel > ./log

After the case has completed, by running 1500 iterations open up the forces Hull/1 file.
Let’s just say for tutorial purposes that the forces have not converged to our satisfaction, and we
want to run the casc out further for an additional 2500 iterations.

To restart the case make the following changes in the system/controlDict filc:

(1) Change: startFrom startTime; = startFrom latestTime;
(2) Changc: endTime 1500; > endTime 4000;
-Now restart the calculation with
>>gsub oFOAM.scp

Notice that the log file will be written over (so make a copy in the future if you wish to
keep the original log file). Also noticc that forccs are now being output undcr forces/1501 filc,
and the original forces are still kept under forces/1.

Let the casc run out to completion after 4000 iterations.
Now open the log file. Some observations:
You can sec that the solvcr started from time equal to 1500 and iterated until 4000.

For each iteration the momentum equation (Ux, Uy, and Uz) is solved first, then the
continuity cquation (p), and finally the turbulent quantity (nuTilda).

112

For each vanable linear solver we ean see the initial residual, final residual, and the
number of iterations it took to drop from the initial to the final residual. We set all of these
tolerances and iteration criteria in the system/fvSolution dietionary file.

There are also continuity error reports.

The best way to typically monitor the solution 1s to make sure that the velocity magnitude
stays at a reasonable number, and make sure that initial pressure residuals are dccrcasing or are
holding steady at an acceptable value.

The last line of the time iteration produces execution and clock time information. This 1s
useful in gauging the efficiency of your solution.
Post-Processing

Notice that there are many time direetories in your processor directorics. Eaeh of these
dircctories contains output information for their respcctive time step.

To reconstruct the data from the decomposed processors use the command
>> reconstructPar —latestTime

The —latestTime means only reconstruet the last time in the processor* files. The
command —time time# will reconstruet for a specific time (nime#) only. If only reconstructPar is
specified, then all time direetories in the processor* filcs will be reconstructed.

To look at the post-processed results simply type thc following commands, depending on
the post-processing tool of ehoicc:

>> foamToEnSight -latestTime => to look at the results in EnSight
>> foamToVTK -latestTime = to look at the results in ParaView

where the eommand —/atestTime is uscd to only look at the results from the last output time step.
To look at the rcsults for all time steps simply leave off the —/atestTime command, and to look at
the results for a specific time (i.e. 0.005) use —time 0.005.

To look at the results in ParaFoam, no additional eommands are needed, simply open
ParaFoam in the ease direetory.

Your results should look like the axial velocity (Ux) and pressure (Press) contours below.

113

Appendix E: ransFSNavyFoam Wigley Hull Tutorial

This tutorial involves using the turbulent, transient, incompressible, multi-phase solver
for the Wigley hull. Although this is a transient solver, this case will NOT be run time accurate.
Only half the body is solved, as symmetry is assumcd. First, we will go over pre-processing and
case setup, then we will run the test case, and finally we will look at some post-processed results.

For more detailed information on the OpenFOAM code and settings consult the User’s
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf.

Pre-Processing and Case Setup

Your initial directory should look like the screen capture below.

total 4.0K

drwxr-xr-x 3 delaneyk users 128 Jul 13 14:50 constant
drwxr-xr-x 2 delaneyk users 100 Jul 13 14:50 system
drwxr-xr-x 2 delaneyk users 72 Jul 13 14:50 0
-rw-r--r-- 1 delaneyk users 646 Jul 13 14:50 oF0AM.scp

constant/ directory

In the previous tutorials the mesh needed to be imported into OpenFOAM from a 3"
party mesh generator. However, for this case the mesh has already been imported, so you will
notice the polymesh/ folder is alrcady present in the constant/ directory. Open up your
constant/polyMesh/boundary file, it should look like the following screen capture. Notice that
the hull surface is of type wall (viscous surfaces must always be of type wall), thc centerplane is
of type symmetryPlane (symmetry planes must always be of type symmetryPlane), and the rest
of the surfaces are of type patch.

115

*
Foam

I

i//
7

N
|7/

Now run the checkMesh command for two reasons:

1. to make sure the mesh was imported correctly

116

IR

/ F ield | OpenFOAM: The Open Source CFD Toolbox
\ /- 0 peration | Version: 1.5.x
\\ 7/ A nd | Web: http://www.OpenFOAM.org
\\/ M anipulation |
File
version 2.0;
format ascii:
class polyBoundaryMesh;
location "constant/polyMesh”;
object boundary;
L * LR N * W R L 2 * 4 * & - - -
hull
{
type wall;
nFaces 3074;
startFace 762555;
}
centerplane
{
type synmetryPlane;
nFaces 5858;
startFace 765629;
}
bottom
{
type patch;
nFaces 3364;
startFace 771487;
}
farfield
{
type patch;
nFaces 8932;
startFace 774851;
}
top
(
type patch;
nFaces 3364;
startFace 783783;
}
inlet
{
type patch;
nFaces 2233;
startFace 787147;
}
outlet
{
type patch:
nFaces 2233;
startFace 789380;
}
LX R - n L 2 LR LA R X2 - - *

/7

1/

2. to asses the quality of the mesh for the OpenFOAM solver

Your checkMesh output should look like the screen captures on the next pages.

][delaneyk@anazon wigley_tutorial]$ checkMesh

O T e e e e e e e i e e e e e i e T e T B\
| | |
BN / F ield | OpenFOAM: The Open Source CFD Toolbox

I \\ / 0 peration | Version: 1.5-dev

| \\ / A nd | Revision: exported |
|| NN M anipulation | Web: http://www.OpenFOAM.org |
e e 7

Exec ¢ checkMesh

Date ¢ Jun 21 2010

Time : 10:56:06

Host : anazon.dt.navy.nil

PID : 29416

Case : /san/home/delaneyk /NavyFOAM-1, 5-dev-rev095/delaneyk-1.5-dev/run/wigley/tutorial/wigley_tutorial
mProcs : 1

Create time

-~> FOAM Warning :

From function dlLibraryTable::open(const fileName& functionlLibName)

in file db/dlLibraryTable/dlLibraryTable.C at line 36

could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/1ib/1inux64GccDPOpt/libnavyFiniteV
olume.so: undefined symbol: _ZN4Foamb6upwindIdE8typeNaneE
--> FOAM Warning :
| From function dlLibraryTable: :open(const fileName& functionLibName)

in file db/dlLibraryTable/dlLibraryTable.C at line 86

could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/1ib/1inux64GccDPOpt/1ibnavyIncompr
lessibleRASModels.so: undefined symbol: _ZN4Foaml4incompressible8RASModelllprintCoeffsEv
|Create polyMesh for time = constant

Time = constant

Mesh stats
points: 273780
faces: 791613
internal faces: 762555
cells: 259028

boundary patches: 7
point zones: 0
face zones: 0
cell zones: 0

iNumber of cells of each type:
hexahedra: 259028
prisms:
wedges:
pyramids:
tet wedges:
tetrahedra:
polyhedra:

(== oo N o]

‘Checking topology. ..
Boundary definition OK.

! Point usage OK.

| Upper triangular ordering OK.
Face vertices OK.
Number of regions: 1 (0K).

Checking patch topology for multiply connected surfaces ...
Patch Faces Points Surface topology
hull 3074 3186 ok (non-closed singly connected)

117

centerplane 5858 6105 ok (non-closed singly connected)

bottom 3364 3510 ok (non-closed singly connected)
farfield 8932 9126 ok (non-closed singly connected)
top 3364 3510 ok (non-closed singly connected)
inlet 2233 2340 ok (non-closed singly connected)
outlet 2233 2340 ok (non-closed singly connected)

|Checking geometry...
| This is a 3-D mesh
Overall domain bounding box (-4 -9.40395e-38 -4) (12 8 1.2)
Mesh (non-empty) directions (1 1 1)
Mesh (non-empty, non-wedge) dimensions 3
Boundary openness (-2.25653e-16 -6.20107e-16 -3.37491e-16) Threshold = le-06 OK.
‘ Max cell openness = 3.23887e-16 OK.
Max aspect ratio = 750.787 OK.
Minumum face area = 7.99769e-06. Maximum face area = 1.44004. Face area magnitudes OK.
Min volume = 3.21742e-08. Max volume = 1.44. Total volume = 664.872. Cell volumes OK.
Mesh non-orthogonality Max: 78.8601 average: 12.7201 Threshold = 70
Number of severely non-orthogonal faces: 18.
Non-orthogonality check OK.
<<Writing 18 non-orthogonal faces to set nonOrthoFaces
Face pyramids OK.
Max skewness = 1.46173 OK.

Mesh OK.

End

You will notiee that there are 18 “severely non-orthogonal faces.” As has been mentioned
in previous tutorials, OpenFOAM’s checkMesh is very harsh. Sometimes it is not possible to
ereate a mesh without any high aspeet ratio, non-orthogonal, or skewed cells. In fact, most
meshes ereated will eontain bad eells, and run fine. However, at some point (which is not
quantitatively elear) the mesh will be so poor it either won’t run, or it will take a long time to
run. There aren’t exaet guidelines on OpenFOAM mesh quality; it simply takes experience
running various meshes.

Another good initial step is to export the geometry into a visual package (EnSight,
ParaView, ete.) and make sure that all surfaeces are grouped and labeled correetly. To export the
geometry, use foamToEnsight for EnSight, foamToVTK for ParaView, and no additional
eommand is needed for ParaFoam. So now take a minute or two and inspeet your geometry in
your package of choice. Your geometry should look like the pictures on the next page, with the
appropriate surface labels. This mesh is meant for instruetional purposes only as you will notice
that the mesh is very coarse.

118

Entire Domain:

Side View of Hull:

The constant/RASProperties file is the same as in the previous tutorials and will not be
covered here.

Open the constant/transportProperties file, it should look like the screen capture below.
No editing is necessary. However, notice that the multi-phase solver requires density (rho) and

119

kinematic viseosity (nu) for both the water (phase 1) and the air (phase 2). Additionally the
surface tension (sigma) is input at the bottom. The surfaee tension could probably be negleeted
for this case of a surface ship (sigma = 0.0), but it must always be included at the bottom of the
transportProperties file.

M-. ___ *\
ll ======z=== I |
THANN / F ield | OpenFOAM: The Open Source CFD Toolbox |
H \\ / 0 peration | Version: 1.3 |
i Y 7 A nd | Web: http://www.openfoan.org |
| NN M anipulation | |
At /
FoanFile
|

version 2.0;
| format ascii;

root s

case "wigley”;

instance =%

local St

class dictionary;

object transportProperties;
}
/‘/ 3] » o« 4 * r - - N * /'I

transportModel Newtonian;

lphasel
1€
transportModel Newtonian;
rho rho {1 -3 00 0 0 0] 1000;
nu nu (02 -10000] 1le-06;
}
lphaseZ
|
transportModel Newtonian;
tho rho [1 -3 0000 0] 1;
nu nu (02 -10000] 1.48e-05;
}
signa sigma [1 0 -2 00 0 0] 0.07;

/,/ . * * W RRENE NN NN " o R " . 23 //

The multi-phase solver also requires a constant/environmentalProperties file, whieh has
not been required in the previous tutorials. This file eontains information on the gravity veetor as
can be seen on the next screen capture. An important note for free surface flow is to make sure
that the gravity and velocity (from the 0/U file) coincide with the desired Froude number
aeeording to the definition:

For this tutorial the Wigley Hull will be run at a Froude number of 0.289, eorresponding
to a Reynolds number of 905,000.

120

Pﬁ ___ 2\
| =s======= | |
il \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
- R / 0 peration | Version: 1.3 |
| \\ / A nd | Web: http://www.openfoan.org |
| \\/ M anipulation | |
\" ___ ./
FoanFile
{

version 2.0;

format ascii;

root i

case “wigley”:

instance i

local et

class dictionary;

object environnentalProperties; 5
}
// - - % L L o * * * & - » - - - 4 - * - * * k * * /"
e g101-20000] (00 -9.81);

7/ B * vee - 7/

0/ directory(Initial and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ dircctory. Again, many of the basic eoncepts stored in the 0/ directory have been eovered in
previous tutorials, thus only new coneepts will be covered here. However, it is worth repeating
that ALL surface names in the 0/... files must match the names from the
constant/polyMesh/boundary file.

For the ransInterNavyFoam solver with thc SST k-omega turbulenee model only U, &,
omega, pd, and gamma files are needed in thc 0/ directory.

Open the /U file; it should look like the sereen capture on the next page. The hull is set
to a no-slip boundary condition, the inlet, farfield, and bottom boundarics are set to slip
boundary conditions to simulate the coordinate system fixed to the hull as would be the case in

tow tank tests.

121

me ______ e R -\
| s==s===== | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
I \\ / 0 peration | Version: 1.S5-dev |
| NN o A nd | Web: http://www.OpenFOAMH.org |
| \\/ M anipulation | i
I "/
FoamFile
|(
version 2.0;
format ascii;
class volVectorField;
location R0
object U;
}
// * = * LIS I T TN T N T I) *x = . % % R //
dimensions [01-10000];
internalField uniform (0.90S 0 0);
boundaryField
{
hull
{
type fixedValue;
value uniform (0 0 0);
}
centerplane
{
type symmetryPlane;
}
bottom
{
type fixedValue;
value uniform (0.905 0 0);
}
farfield
{
type fixedValue;
value uniform (0.90S5 0 0);
}
top
{
type zeroGradient ;
}
inlet
{
' type fixedValue;
value uniform (0.905 0 0):
|
}
‘ outlet
| {
| type zeroGradient;
| }
i}
l7/ 2 222 . - » 4 k% » * * » //

Both the 0/k and O/omega files are set up similar to the previous tutorials, and should
look like the following screen captures.

122

}

F ield

I A\\ / 0 peration | Version:
| \\ / A nd | Web:
| \\/ M anipulation
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location -
object omega;
}
// £0F
L]
dimensions [0O0 -10000];
internalField uniform 400;
boundaryField
hull
{
type zeroGradient;
}
centerplane
{
type symnetryPlane;
}
bottomn
{
type fixedValue;
value uniform 400;
}
farfield
{
type fixedValue;
value uniform 400;
}
top
{
type fixedValue;
value uniform 400;
}
inlet
{
type fixedValue;
value uniform 400;
}
outlet
{
type zeroGradient;

| OpenFOAM: The Open Source CFD Toolbox

1.5-dev
http://www.OpenFOAM. org

//

The multi-phase solver requires a 0/gamma file which represents the volume fraction
(gamma = 0 = air and gamma = | = water). The solver is using the Volume of Fluid (VOF)
method to solve for both the air and water.

Notice that all of the bottom and outlet boundaries are set to zero gradient. The top is set
to inletOutlet, which switches between a fixed value and zero gradient condition depending on
the direction of flow across the boundary. The inlet and farfield are set to the calmWater
boundary condition, which keeps the air-water interface at a constant height along the boundary.
The calmWater condition is especially important in avoiding artificial waves at the inlet and side
of the domain during mesh motion calculations. The centerplane is set to symmetryPlane.

124

|
1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

I \\ / 0 peration | Version: 1.S5-dev
il N\ / A nd | Web: http://www.OpenFOAM.org
| \\/ M anipulation |
e R R i L e L e e e R et
FoamFile
{
version 2305
format ascii;
class volScalarField;
location 0"
object gamma;
}
//"\“"«‘O"CﬁOGGﬂiv‘t* * & & & & & & & £ & & + & * &
dimensions [0 00O0O0O0O0]:

internalField uniform O;

boundaryField
{
hull
{
type zeroCradient;
}
centerplane
{
type synmetryPlane;
bottonm
{
type zeroGradient;
}
farfield
{
type calmWater;
valueAbove 0;
valueBelow 1;
elevation 0;
axis zZ3
value uniform 0;
}
top
{
type inletOutlet;
inletValue uniform O;
value uniforn 0;
}

(screen output continues on the next page...)

125

______ =\

.-9,/

inlet
{
type calmnWater;
valueAbove 0;
valueBelow 1;
elevation 0;
axis Z
value uniform 0;
}
|
‘ outlet
{
type zeroGradient;
}
}
/ * e 222222222 1222 r 223222222 2] I AR AR R AR RN INONRERS //

Now open the 0/pd file and notice that for the multi-phase solver pressure is in terms of
the variable pd, as opposed to p for the single phase solver. For the single phase solver the
pressure (p) is a relative pressure, whereas a more precise (pd) pressure is solved for in
ransFSFoam. The top and outlet have the pressure set to 0 and the rest are at zero gradient and
symmetry plane.

p" -------------------------------- S G sl sm m s e e e e e =\
== === | I
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
' XX 4 0 peration | Version: 1.5-dev |
] N\ / A nd | Web: http://www.OpenFOAM,org |
(1 A/ M anipulation | I
e e AN e S k) o
FoamFile
{
version 2.0;
format ascii;
class volScalarField:
: location B
object pd:
}
// * * * P & & » *« & & & & & ¢« &« & ¢ ‘ & ‘w/‘/
dimensions [1 -1 -20000]):
internalField uniform 0;
;boundaryField
i
| hull
{
type zeroGradient;
}
centerplane
{
type symmetryPlane:
}
botton
{
type zeroGradient;
}
farfield
{
type zeroGradient;
}
top
{
type fixedValue:
value uniforn 0;
}
inlet
{
type zeroGradient;
)
outlet
{
type fixedValue;
value uniforn 0;
}
}
// H sk - SRR R & *] - /7

System/ Folder (Solver Settings)

Now we will look at some of the solver settings and controls that are located in the
system/ directory, which contains: controlDict, setFieldsDict, fvSolution, fvSchemes, and

decomposeParDict files.

The system/decomposeParDict dictionary file was covered extensively in the
simple Foam tutorial, thus will not be discussed here.

Open the system/controlDict dictionary file. It should look like the sereen capture below.

The solver settings are fairly obvious, and more detail is provided on page U-108 of the
User’s Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only
cover a broad view of the file.

The solver speeified in application input does not matter. The solver is specified on the
command line or in a seript file. Thus, this is an insignifieant line for our purposes.

The ransFSFoam solver is a transient solver, thus it requires maxCe and maxDeltaT
inputs that specify the maximum possible Courant (CFL) number and time step, respectively.
When the adjustableTimeStep is set to yes the time step specified by deltaT is ignored and the
time step size is chosen by the maximum Courant number set by maxCo.

The maxCo (CFL) ecommand is very important to solution stability. There is no single
value that is used for all eases, and in most cases the user will start out with a low CFL number
and then ramp it up once the initial solution transients die out. This is a parameter that the user
will have to gain experience over time to learn the best solution strategy. For now we will start
with CFL = 5.0 and leave it as such throughout the solution, but it is not unusual to start cases
out with CFL as low as 1 and ramp it up into the 100’s. The controlDict is read continuously
during the ealeulation, thus the CFL can be changed on the run without having to stop the run.

Near the bottom, finite volume and turbulenee model libraries are dynamically loaded by
libs(“..”); .

At the bottom the hullForce library is loaded, which ealeulates forees and moment over
the hull surface. The moments are taken about the point specified by COR.

128

T — R —————— -\
| = | |
1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.4 |
| NN\ ¥ And | Web: http://www.openfoan.org |
| \/ M anipulation | |
\t ______ e Sl A . i i il o T il s W el i Sl i \/
FoanFile
{
version 2.0;
format ascii;
root o
case “wigley”:
instance
local ey
class dictionary;
object controlDict;
}
/1 N . gk)] //
application interFoam;
startFron startTime;
startTime 05
stopAt endTime;
lendTime 50;
deltaT 0.01;
writeControl runTime:
writelnterval 10:;
‘purgelirite 0;
writeFormat asciti;
‘writePrecision 6;
writeCompression uncompressed;
timeFormat general;
timePrecision [H
runTineModifiable ves;
adjustTimeStep yes;
mnaxCo S0

"

libs ("libnavyFiniteVolume.so" “libnavyIncompressibleRASModels.so” “libmyDynamicFvMesh.so™):

naxDeltaT S.e-2;

(screen output continues on the next page...)

v

functions
hullForce
(
type hullForce;

// Where to load it from (if not already in solver)
functionObjectLibs (“libhullForce.so");

patches (hull);
CofR (0.5 0 0);

):

[/ soereerermecereccerercracerenccenccioactanenserconsacasenatsensenesoaes

vk
Now open thc system/fvSolution dictionary file. 1t should look like the screen capture on
the next pagcs.

The fvSolution file contains linear solver information as well as solver algorithm settings.

Notice that we are using multi-grid (GAMG) lincar solvers for all of the pressure terms
instead of the conjugate gradient (PCG) solvers from the previous tutorials. The linecar solver
settings and critcria are explaincd in further detail in the User’s Guide. The important part of the
solvers is noticing the tolerance and relative tolerancc (re/Tol) which dctermine when the solver
will stop itcrating.

pCorr is an initial pressurc calculation that is donc beforc the first iteration only for this
case (as can be secn latcr on in the log file). If the mesh were moving there would be a pCorr
loop for cach itcration.

The transient solver requires the PISO algorithm as opposed to the SIMPLE algorithm
that 1s rcquired for stcady solvers. Most of the PISO settings (correctors) specify the number of
iterations and subiterations for paramcters likc vclocity, pressure, and gamma. Quter correctors
loop through all linear solvers (U, k, omega, pd, and gamma), non-orthogonal corrcctors loop
through the pressurc cquation, and gamma correctors and subcycles loop through the volumc
fraction.

For future purposes, the user is encouraged to changc the various PISO settings and look
at the log filc to sec how these settings cffect the solution iterations. Solutions on high quality
meshes will require less correctors and subcycles, while for poor mcshes it may be neccssary to
have morc correctors to achieve a solution. Thc higher thc number of correctors and cycles the
solution will be morc stable; however, itcration time will increase rapidly. There is no “correct”
answer for each PISO paramcicr.

The cGamma paramcter specifies the sharpness of the interface (0 = less sharp and | =
most sharp). CoGamma refers to the gamma solution advancement. For now the user should
simply leave cGamma and CoGamma at 0 and 0.5 for all cascs.

For the timc being, make sure that your settings look like the screen. More dctail on the
PISO settings is provided on pagc U-117 of the User's Guide
(http://foam.sourceforge.net/doc/Guides-ad/UserGuide.pdf).

130

I i e B i, el R . e N W At i il ol ___'\

| |

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.3 |
| N 7 A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\f oo e BEA

// FoamX Case Dictionary.

’FoanFile

{

‘ version 2.9
format ascii;
root bl
case "wigley"”:
instance i

| local S

[

| class dictionary:

object fvSolution;

0

// * - * * * * * * * * * +* ¢ * * +* * * @ * * * * * +t @ * * * * * - * * * * L] //

lsolvers

I

pcorr GAMG

{
tolerance le-4:
relTol 0:
ninlter X
naxlter 25;
smoother DICCaussSeidel;
nPreSweeps 0;
nPostSweeps 28
nBottonSweeps 2
cacheAgglomeration false;
nCellsInCoarsestlevel 10;
agglomerator faceAreaPair;

| nergelevels 1:

}:

F

| pd GAMG
{

' tolerance le-7:
relTol 0.01;
ninlter | %3
naxlIter 25:
smoother D1CGaussSeidel ;
nPreSweeps Vo

' nPostSweeps 23
nFinestSweeps 2%

f cacheAgglomeration false;
nCellsInCoarsestlevel 10;
agglomerator faceAreaPair:
nergelevels 1 6F

Dis

(screen output continues on the next page...)

131

pdFinal GAMG

{

}:

tolerance
relTol
ninl ter
naxIter

nVcycles

smoother
nPreSweeps
nPostSweeps
nFinestSweeps

le-7;
0.01;
0 4

100;

2

DICCaussSeidel;
20
2
24

cacheAgglomeration false;
nCellsInCoarsestlevel 10;

agglomerator
nergelevels

U PBiCG

{

3

preconditioner
tolerance
relTol

ninl ter

gamnna PBiCG

(

—~

}:

preconditioner
tolerance
relTol

ninlter

PBiCG

preconditioner
tolerance
relTol

ninl ter

omega PBiCC

{

}

PISO
(

preconditioner
tolerance
relTol

ninlter

nomentumPredictor
nOuterCorrectors
nCorrectors

nNonOrthogonalCorrectors 0;

faceAreaPair;
- 14

DILU;
le-09;
0.001:
918

DILU;
le-08;

1;

DILU;
le-07;
0.01;
1;

DILU;
le-07;
0.01:
1%

nCGamnnaCorr
nGammaSubCycles
cCamna

CoGammna

O O=N

}

relaxationFactors
(
pd
u
k
omega
gamma

OO0 COO0O
VUt ~NN
ee oo ws b es

}

B/ N R R RN S R NN E A RN C R NP S AN E P h P NN S EI RN CEE N NI L CTOETPE NS RT SNSRI SEORS]

Now open the system/fvSchemes dictionary file. The file is the same as tutorials cases
except for additional divergence and flux terms. Under the divSchemes section gamma (phi and
phirb) divergence terms are needed for the VOF solution. Also, pd, gamma, and pcorr flux terms
are required under the fluxRequired section. Your file should look like the screen eapture on the
next page.

133

| ===s===== | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 1.3 |
| NN\ A nd | Web: http://www.openfoan.org |
| \\/ M anipulation | I
\' __ TR '/
FoanFile
{
version 203
format ascii;
root .
case “"wigley";
instance B
local By
class dictionary;
object fvSchenmes;
}
//t'ﬂﬁﬁﬁi"""ﬁ!e'fu'f-"ﬂ'.""ﬁt"t<.'Q’//
ddtSchenmes
{
default Euler;
1}
|gradSchenmes
{
default Gauss linear;
}
divSchenes
{
div(rho“phi,l) Gauss linearUpwind celllimited Gauss linear 1.0;
div(phi,gamnna) Gauss vanleer0Ol;
div(phirb,gamna) Gauss interfaceCompression;
div(phi,k) GCauss upwind;
div(phi,omnega) Gauss upwind,
}
laplacianSchemnes
{
default Gauss linear corrected;
}
interpolationSchemes
{
default linear;
}
snGradSchemes
default corrected;
}

134

1

|fluxRequired

{
default no;
pd:

\ pcorr;

[gamma;

[}

W L s R e R R //

Now open the system/setFieldsDict dictionary file. This dictionary can be used to initially
set flow field parameters over the entire domain. For now we will use it to set the domain
volume fraction up appropriately. The field is initially set to air (defaultFieldValues setting
gamma 0). The regions section uses boxToCell to set every cell within a box defined by the
minimum and maximum rectangular points (which can extend outside the domain) to water
(gamma 1).

B, _____________________________)
| mmmmm=m—= : | |
1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
1 A\\ / 0 peration | Version: 1.3 |
| NN 7 A nd | Web: http://www.openfoan.org 1
| \\/ M anipulation | l
*- */
FoanFile
{
version 2.9;
format asgii;
root Ry
case g
instance "system"”;
local ekl
class dictionary;
object setFieldsDict;
}
//“tﬂ..“"va-\“t.‘,f'ﬂﬁ’\Qv‘t.. t""'t""w//'
defaultFieldValues
(
volScalarFieldvValue gamma 0
Dk
regions
(
boxToCell
{
box (-10 0 -20) (20 20 0);
fieldValues
(
volScalarFieldValue gamma 1
)
}
D&
// » A R R X ER R R R R R R R R T R R T R R RSN N - LR X N 4 - - - + - [EEE TR R RN N - //

135

The setFields command will alter the 0/gamma file, so it is wise to make a copy of your
original file. This can be done in Linux by:

>> ¢p —r O/gamma 0/Original_gamma

Now we are ready to set the initial flow field with the setFields command which executes
the setFieldsDict dictionary. Enter setFields into the command line. Your output should look
like the screen capture below.

|(delaneyk@amazon wigley_tutorial]$ setFields

/' ___ ft\
£ A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN / 0 peration | Version: 1.S5-dev |
i NN\ A A nd | Revision: exported |
|I \\/ M anipulation | Web: http://www.OpenFOAM.org |
\ == 24
!Exec : setFields

Date : Jun 21 2010

Time : 11:05:12

[Host : amazon.dt.navy.mnil

|PID : 31380

[Case : /san/home/delaneyk/NavyFOAM-1.5-dev-rev995/delaneyk-1. 5-dev/run/wigley/tutorial/wigley_tutorial

inProcs : 1

V7 - » * . * - » . » r * * //

Create time

--> FOAM Warning :

From function dlLibraryTable::open{const fileName& functionLibName)

in file db/dlLibraryTable/dlLibraryTable.C at line 86

could not load /san/home/delaneyk/NavyFOAM-1,S-dev-rev995/NavyFOAM/1ib/linux64GccDPOpt/tibnavylincompr
essibleRASModels.so: undefined symbol: _ZN4Foamldincompressible8RASModelllprintCoeffsEv
Create mesh for time = 0

[Reading setFieldsDict

Setting field default values
Setting volScalarField gamma

fSetting field region values
Adding cells with center within box (-10 0 -20) (20 20 0)
Setting volScalarField gamma

End
|(detaneyk@anazon wigley_tutoriall$

It is wise to make sure that the setFields command did what it was supposed to do by
viewing the results. Previous tutorials go over how to get OpenFOAM results into EnSight
(foamToEnSight) and ParaView (foamToVTK).

Once the case is imported into your post-processor of choice, your domain should look
like the picture below. You should have gamma equal to zero above z=0 and gamma equal to 1
below z=0.

136

Running the Case

Now the problcm is set up correctly and ready to run. The final step is to decompose the
domain by the decomposePar command.

You should now have 8 processor files (processor0 2 processor?) loeated in your case
directory.

Thc final step is to submit your script (eFeam.scp in this example), and then the job will

>>qgsub oFOAM.scp

Remember that at the bottom of our contrelDict file, we specified a function named
hullForces. This file calculates forces over the patch speeified by patches (hull in our case), and
places them in a directory named hullForce under a time file name that eorresponds to
startTime.

Now let the filc run out until its endTime of 50 seconds.

You can open or tail the log file to monitor your solution residuals and look at your linear
solution strategy that was set under the PISO scction in system/fvSolution. Monitoring the
pressure residuals and the veloeity magnitude value from iteration to iteration will give you a
good idea of your solution strategy. Rapidly inercasing pressure residuals or veloeity magnitudes
over econseeutive iterations usually mean the solution is diverging.

Post-Processing

Notice that there are many time direetories in your processor directories. Each of these
directories contains output information for their respectivc time step.

To reconstruct the data from the decomposed processors use the command

>> reconstructPar —latestTime

137

The -—latestTime means only reconstruct the last time in the processor* files. The
command —time time# will reconstruct for a specific time (time#) only. If only reconstructPar 1s
specified, then all time directories in the processor* files will be reconstructed.

To look at the post-processed results simply type the following commands, depending on
the post-processing tool of choice:

>> foamToEnSight -latestTime => to look at the results in EnSight
>> foamToVTK -latestTime => to look at the results in ParaView

where the command —latestTime is used to only look at the results from the last output time step.
To look at the results for all time steps simply leave off the —latestTime command, and to look at
the results for a specific time (ic 0.005) use —time 0.005.

To look at the results in ParaFoam, no additional commands are needed, simply open
ParaFoam in the case directory.

Your results should look like the following figures.

Bow Wave:

138

Free Surface Contour Plot:

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

(5]

10.

11.

12.

I3k

14.

15

16.

References

. Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., “A Tensorial Approach to

Computational Continuum Mechanics Using Object-Oriented Techniques,” Computers in
Physics, 12(6), pp. 620 — 631, 1998.

Kim, S.-E., Schroeder, S. and Jasak, H., (2010), “A Multiphase CFD Framework for
Predicting Performance of Marine Propulsors,” Thirteenth international Symposium on
Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, April 4 -
9, 2010.

Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, 1998.

Gaskell, P.H. and Lau, A.K.C.,“Curvature-Compensated Convective Transport: SMART,
a New Boundedness-Preserving Transport Algorithm,” /nt. J. Numer. Methods Fluids,
Vol. 8, p. 617, 1988.

Leonard, B.P., “Simple High-Accuracy Resolution Program for Convcctive Modeling of
Discontinuities,” Int. J. Numer. Meth. Fluids, Vol. 8, pp. 1291-1318, 1988.

Godunov, S.K., “Finite Difference Method for Numerical Computation of Discontinuous
Solutions of the Equations of Fluid Dynamics,” Mat. Shornik, Vol. 47, pp. 271-306,
1959.

van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V. A Second-
Order Sequel to Godunov's Method,” J. Comput. Phys., Vol. 32, p. 101, 1979.

Jasak, H. Weller, H.G., and Gosman, A.D., “High Resolution NVD Differencing Schemc
for Arbitrarily Unstructured Meshes,” Int. J. Numer. Methods Fluids, Vol. 31, p. 431,
1999.

Leonard, B.P., “The ULTIMATE Conservative Difference Scheme Applied to Unsteady
One-Dimensional Advection,” Comp. Meth. Appl. Mech. Eng., Vol. 88, pp. 17-74, 1991.
Ubbink O. and Issa, R.l., “Method for Capturing Sharp Fluid Interfaces on Arbitrary
Meshes,” J. Comput. Phys., Vol. 153, pp. 26-50, 1999.

Muzaferija S. and Peric M., “Computation of Free Surface Flows Using Interface-
Tracking and Interface-Capturing Methods,” Computational Mechanics Publications,
WIT Press, Southhampton, nonlinear water wave interaction edition, Vol. 3. pp. 59-100,
1998.

Park, LLR.,, Kim, K.S., Kim, J., and Van, S.H., “A Volume-Of-Fluid Method for
Incompressible Free Surface Flows,” Int. J. Numer. Meth. Fluids, Vol. 61, pp. 1331-
1362, 2009.

Jasak H, and Weller H., “Interface Tracking Capabilities of the Inter-Gamma
Differencing Scheme”. Internal Report, Mechanical Engineering Department, Imperial
College of Science, London, 1995.

Khosla, P.K. and Rubin, S.G., “A Diagonally Dominant Second-Order Accurate Implicit
Scheme,” Comput. Fluids, Vol. 2, p. 207, 1974.

Hayase, T., Humphrey, J.A.C., and Greif, R., “A Consistently Formulated QUICK
Scheme for Fast and Stable Convergencc Using Finite-Volume Iterative Calculation
Procedures,” J. Comput. Phys. Vol. 98, p. 108, 1992.

Holmcs, D.G. and Connell, S.D., “Solution of the 2D Navier-Stokes Equations on
Unstructurcd Adaptive Grids,” AIAA-1989-1932, 1989.

. Frink, N.T., “Recent Progress Toward a Three-Dimensional Unstructured Navier-Stokes

Flow Solver,” AIAA-94-0061, 1994.

141

18.

19.

20.

21.

22,

Kim, S.-E., Makarov, B. and Caraeni, D., “A Multi-Dimensional Linear Reconstruction
Scheme for Arbitrary Unstructured Mesh,” AIAA-2003-3990, 2003.

Delaney, K., Kim, S-E. and Shan, H., “Computational Investigation of Maneuvering
Characteristics of Non-Bodies-of-Revolution,” Proceedings Open Source Computing
International Conference (OSCIC), Munich, Germany, Nov., 2010.

Kim, S.-E. and Rhee, S. H., “Assessment of Eight Turbulence Models for a Three-
Dimensional Boundary layer Involving Crossflow and Streamwise Vortices,” AIAA
Paper 2002-0852, 2002.

Kim, S.-E., Rhee, B, Shan, H., and Gorski, J., Paterson, E. and Maki, K., "Prediction of
Turbulent Free-Surface Flows Around Surface Ships Using a Scalable Unstructured
Finite-Volume Based RANS Solver" Proceeding Gothenburg 2010 Workshop on CFD
in Hydrodynamics, Gothenburg, Sweden, Dec., 2010.

Shih, T.-H., Liou, W.W., Shabbir, A., and Zhu, J., “A New k-e Eddy-Viscosity Model for
High Reynolds Number Turbulent Flows - Model Development and Validation,”
Computers & Fluids, Vol. 24, No. 3, pp. 227-238, 1995.

. Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engincering

Applications,” AIAA J., Vol.32, No.8, pp. 1598-1605, 1994.

142

No of Copies

Print

No of Copies

Print

PDF

PDF

11

Report Distribution

Office
HPCMP

PSU/ARL

Univ of
Michigan

DTIC

NSWCCD
Code

3452
5060
5700

5800

Individual

Paula Gibson, Myles Hurwitz, Richard
Kendall, Doug Post

David Boger, Eric Paterson
Kevin Maki

Individual

Library
D. Walden

P. Chang, K. Delaney, M. Ebert, J. Gorski,
R. Miller, S-E. Kim, B. Rhee, H. Shan, J.
Slomski, A. vonLoecbbecke, W. Wilson

R. Hurwitz

